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Abstract

There has been growing interest in employing neural networks (NNs) to directly solve
constrained optimization problems with low run-time complexity. However, it is non-trivial
to ensure NN solutions strictly satisfy problem constraints due to inherent NN prediction
errors. Existing feasibility-ensuring methods are either computationally expensive or lack
performance guarantee. In this paper, we propose Homeomorphic Projection as a low-
complexity scheme to guarantee NN solution feasibility for optimization over a general
set homeomorphic to a unit ball, covering all compact convex sets and certain classes of
non-convex sets. The idea is to (i) learn a minimum distortion homeomorphic mapping
between the constraint set and a unit ball using a bi-Lipschitz invertible NN (INN), and then
(ii) perform a simple bisection operation concerning the unit ball such that the INN-mapped
final solution is feasible with respect to the constraint set with minor distortion-induced
optimality loss. We prove the feasibility guarantee and bounded optimality loss under
mild conditions. Simulation results, including those for non-convex AC-OPF problems in
power grid operation, show that homeomorphic projection outperforms existing methods in
solution feasibility and run-time complexity while achieving similar optimality loss.

Keywords: constrained optimization, feasibility, homeomorphism, projection, distortion

1 Introduction

Constrained Optimization (CO) plays a pivotal role across a spectrum of engineering fields,
including supply chain, transportation, power systems, and resource allocation. To solve
diverse CO problems, various iterative algorithms have been developed and incorporated into
commercial solvers such as Gurobi and MOSEK. Despite their success, iterative algorithms
often fail to solve challenging CO problems in real-time, limiting their usefulness in time-
sensitive applications. For instance, solving AC optimal power flow (AC-OPF) problems
in real-time is crucial for efficient power grid operations. In these contexts, the inability of
iterative algorithms to deliver timely solutions can significantly impair operational efficiency
and effectiveness.

∗. Corresponding author.

©2024 Enming Liang, Minghua Chen, and Steven H. Low.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided at
http://jmlr.org/papers/v25/23-1577.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v25/23-1577.html


Liang, Chen, and Low

Recently, machine learning (ML) schemes have been developed for solving CO in real-
time, including the end-to-end (E2E) mapping scheme (Pan et al., 2019; Kotary et al., 2021),
the learning-to-optimize (L2O) iterative scheme (Khalil et al., 2016; Chen et al., 2021b),
and hybrid approaches (Diehl, 2019; Baker, 2019). For instance, boosted by the universal
approximation capacity of neural networks (NNs) (Hornik et al., 1989; Leshno et al., 1993),
the E2E approaches learn the mapping between the input parameters and high-quality
solutions of CO. After the training procedure, NN directly outputs the solution in real-time,
achieving a speedup of several orders of magnitude compared to traditional iterative solvers
(Pan et al., 2019). This efficiency is particularly evident in complex applications such as
optimal power flow (OPF) problems (Guha et al., 2019; Pan et al., 2020; Fioretto et al.,
2020; Zamzam and Baker, 2020; Donti et al., 2020; Park et al., 2023; Huang et al., 2024).

In addition to the stringent real-time requirements, ensuring the safety of predicted
solutions is significant, meaning that these solutions must consistently satisfy the problem
constraints. However, guaranteeing the feasibility of NN solutions poses a non-trivial
challenge due to inherent NN prediction errors. Existing methods that aim to ensure solution
feasibility are either burdened by high computational costs or lack performance guarantees
over general constraints. For detailed discussions on these methods, refer to Section 2.

In this paper, we develop Homeomorphic Projection (HP) as a novel low-complexity
approach to “project” infeasible NN solutions on the constraint set with bounded optimality
loss. We make the following contributions:

▷ We consider the optimization problem over a ball-homeomorphic set in Sec. 3, which
encompasses all compact convex sets and certain non-convex sets, which is significantly
broader than previous works that focused primarily on linear or convex sets. We also provide
sufficient conditions to characterize ball-homeomorphic sets.

▷ We propose an HP framework for ensuring NN solution feasibility in Secs. 4 and 5.
It includes (i) training a bi-Lipschitz invertible neural network (INN) to approximate a
minimum distortion homeomorphic (MDH) mapping between the constraint set and a unit
ball, and (ii) performing a simple bisection operation in the unit ball so that the INN-mapped
final solution is feasible with minimal distortion-induced optimality loss.

▷ In Sec. 6, we establish theoretical foundations for the HP framework, including (i)
universal approximation capability and bounded distortion of bi-Lipschitz INN for MDH
mappings, and (ii) feasibility guarantee, bounded optimality loss, and runtime complexity of
the bisection operation for recovering infeasible NN predictions to feasible solutions.

▷ In Sec. 7, we carry out simulations, including four benchmark convex optimization
problems and real-world non-convex AC-OPF problems in power grid operations. The
results show that homeomorphic projection outperforms existing methods in feasibility and
run-time complexity while achieving similar optimality loss.

To the best of our knowledge, this is the first work to guarantee NN solution feasibility
for (fairly) general constrained optimization problems with bounded optimality loss and low
run-time complexity1. Code is available at HP Code.

1. This work is a substantial extension of its conference version (Liang et al., 2023).
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2 Related Work

ML schemes have been developed for solving CO in real-time, including the end-to-end (E2E)
mapping scheme (Amos, 2022), the learning-to-optimize (L2O) iterative scheme (Chen et al.,
2021b), and hybrid approaches (Kotary et al., 2021). However, guaranteeing the feasibility
of NN solutions with respect to the input-dependent constraint is non-trivial. Researchers
have developed different approaches to improve the feasibility, and a summary is in Table 1.

Penalty approach. To reduce the constraint violation of predicted solutions, different
penalty functions (e.g., quadratic function) are designed and augmented in the loss function
(Cheng et al., 2019; Pan et al., 2019, 2020; Zamzam and Baker, 2020; Fioretto et al., 2020).
Considering the optimality condition of CO, Karush–Kuhn–Tucker (KKT) conditions (a
set of equations) are treated as equality constraints to improve the performance of NN
(Nellikkath and Chatzivasileiadis, 2021a,b; Zhang et al., 2021). However, those approaches
do not guarantee feasibility over constraints set due to the prediction error of NN.

Warm-start approach. The NN predictions can serve as effective warm-start points
for iterative solvers, potentially reducing the number of iterations required to reach the
optimal solution (Diehl, 2019; Baker, 2019; Sambharya et al., 2023, 2024). However, despite
this reduction in iterations, the process of solving a warm-start problem may still entail
significant computational demands, posing challenges for real-time operational applications.

Projection approach. Orthogonal projection can be applied to ensure the feasibility of
NN predictions. However, either solving projection problem by optimization solver (Diamond
and Boyd, 2016) or applying equivalent projection layers (Amos and Kolter, 2017; Agrawal
et al., 2019; Chen et al., 2021a) is computationally expensive and inefficient in real-time.
Differentiable gradient-based methods are proposed to correct infeasible solutions in (Donti
et al., 2020). L2O-based methods are also proposed to learn the iterative process of projection
by different types of NN (Heaton et al., 2021, 2022). However, those projection-analogous
approaches do not guarantee feasibility for general input-adaptive constraints.

Sampling approach. To guarantee feasibility, feasible points are sampled and used to
construct the inner approximation of the original constraint set. A convex combination of
vertexes and rays is adopted to ensure feasibility under linear constraints (Frerix et al., 2020;
Zheng et al., 2021). For general but input-invariant constraint sets, sampling-based methods
are theoretically studied in (Kratsios et al., 2021). However, the number of required feasible
samples grows exponentially with the dimension of the decision variable, which limits their
potential for complex CO problems.

Preventive learning and gauge mapping. These methods are dedicated to finding a
feasibility-guaranteed NN and then improving its optimality. A preventive learning framework
is proposed in (Zhao et al., 2020, 2023), which first calibrates inequality constraints to
anticipate NN prediction errors and trains NN to limit the worst-case error, thereby ensuring
the predicted solutions remain feasible. Another research line utilizes a closed-form gauge
mapping, a bijection between a hypercube and a polytope, to constrain the NN output
within the polytope and train the NN to improve the optimality (Tabas and Zhang, 2022a,b;
Li et al., 2023). For fixed convex sets, infeasible points can be scaled to the constraint
boundary given an interior point (Tordesillas et al., 2023; Li and Mohammadi, 2023). Those
approaches only work for linear/convex constraints, and there lacks a computationally
tractable approach to realizing feasibility over general constraints.
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Table 1: Existing work for ensuring NN solution feasibility for continuous constrained optimization problems.

Existing Work Constraint Set Performance Guarantee
(see Sec. 2 for references) Input-adaptive Non-convex Feasibility Optimality bound Low run-time

Penalty method ✓ ✓ ✗ ✗ ✓

Warm-start method ✓ ✓ ✓ ✓ ✗

Orthogonal Projection ✓ ✓ ✓ ✓ ✗

Sampling approach ✗ ✓ ✓ ✓ ✗

RAYEN ✗ ✗ (convex) ✓ ✓ ✓

Preventive learning ✓ ✗ (linear) ✓ ✗ ✓

Gauge mapping ✓ ✗ (linear) ✓ ✗ ✓

Homeomorphic Projection ✓ ✓ (BH) ✓ ✓ ✓

1 BH indicates ball-homeomorphic sets, including all compact convex sets and certain non-convex sets.

In summary, existing schemes to ensure NN solution feasibility either incur high run-time
complexity or lack feasibility and optimality guarantee over general sets. In this paper, we
propose Homeomorphic Projection as a low complexity scheme to guarantee NN solution
feasibility with bounded optimality loss. Our scheme is conceptually related to the projection
approach and gauge mapping. However, it is uniquely different in its design, applicability to
non-linear constraints, and performance guarantee.

3 Settings and Open Issue to Address

We consider a parametric constrained optimization problem:

min
x∈Rn

f(x, θ) s.t. x ∈ Kθ, (1)

where x ∈ Rn is the decision variable and θ ∈ Θ ⊂ Rd is the input parameter. The objective
function f(x, θ) is continuous and can be non-convex. The optimal solution of problem
in (1), assumed to be unique, is denoted as x∗θ = argminx∈Kθ{f(x, θ)}. The constraint set
Kθ is compact and specified by nineq inequalities2: Kθ = {x | gi(x, θ) ≤ 0, i = 1, . . . , nineq},
where gi(x, θ) is a continuous function.

∀θ ∈ Θ, Kθ is homeomorphic to the unit ball B = {x ∈ Rn|∥x∥ ≤ 1}, denoted as Kθ ∼= B.
See Fig. 1 for illustration.

Definition 1 (Homeomorphism) A mapping ψ : X → Y between two topological spaces
is a homeomorphic mapping, i.e., homeomorphism, if it is a continuous bijection with a
continuous inverse.

Homeomorphism represents a class of mapping, continuous bijection with a continuous
inverse, which preserves topological properties like compactness and connectedness. For
example, any invertible linear transformation can be a homeomorphic mapping. While
the homeomorphism between two sets (e.g., Kθ and B) is to say there exists at least one
homeomorphic mapping between them (Lee, 2013). In other words, Assumption 3 means

2. While our primary formulation does not explicitly incorporate equality constraints, we remark that
equality constraints of constant rank (e.g., linear equations) can be exploited and removed without losing
optimality as presented in Appendix A. We thus focus on formulations with only inequality constraints.
However, we do study problems with linear/nonlinear equality constraints in simulations in Sec. 7
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Figure 1: Homeomorphism between constraint sets and a unit ball.

that the constraint set and unit ball are topologically equivalent, and we can continuously
stretch a ball to the constraint set and vice versa.

We proceed to outline several sufficient conditions under which a set, potentially non-
convex, is homeomorphic to a ball:

Proposition 2 An n-dimensional compact set K in Euclidean space is homeomorphic to a
ball, denoted as K ∼= B, if it satisfies any of the following conditions:

• K is convex or star-convex (Geschke, 2012),

• n = 2 and K is simply connected (Ahlfors and Bers, 1960),

• n = 5 and ∂K is diffeomorphic to Sn−1 (Smale, 1962),

• n ≥ 6 and ∂K is simply connected (Smale, 1962),

where ∂K denotes the boundary of K and Sn−1 represents an n− 1 dimensional sphere. A
set X is star-convex if there exists a point x ∈ X such that the line segment from x to any
point in X is contained in X . A set X is simply connected if it is path-connected, and any
loop within X can be contracted to a point without leaving X . The term “diffeomorphic” is
used when differentiable homeomorphic mapping exists between one set and another.

Based on the characterization of the ball-homeomorphic set in Proposition 2, Assumption 3 is
easy to satisfy, e.g., by any compact convex set, and a class of compact and simply-connected
non-convex set. Thus, the formulation in (1) under Assumption 3 is pretty general and
covers many continuous optimization problems in various domains.

3.1 Open Issue: ensuring NN solution feasibility

As discussed in the introduction and related works, there have been NN schemes that
learn the input-solution mapping F : Rd → Rn for a constrained optimization problem
and pass inputs through the NN to obtain high-quality solutions instantly. However, it is
non-trivial to ensure NN solution feasibility with respect to the constraints due to inherent
NN prediction error. As discussed in Sec. 2, existing feasibility-ensuring methods are either
computationally expensive or lack performance guarantees. To date, it remains largely open
to ensure NN solution feasibility to the problem in (1) with bounded optimality loss and
low run-time complexity.
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4 Our Homeomorphic Projection Framework

Figure 2: Overview of the HP framework.

We develop Homeomorphic Projection as a low-complexity approach to take an infeasible
solution to the problem in (1) and generate a feasible solution with bounded optimality loss.
As shown in Fig. 2, the idea is to (i) learn a minimum distortion homeomorphic (MDH)
mapping between the constraint set Kθ and a unit ball B as defined in Sec. 4.1, and then (ii)
perform a simple bisection operation in the unit ball so that the corresponding solution in
the constraint set is feasible with minor optimality loss, as discussed in Sec. 4.2. We present
a method to learn MDH mappings using INN in Sec. 5 and carry out performance analysis
in Sec. 6.

4.1 Minimum distortion homeomorphic mapping

Definition 3 (Distortion) Let ψ : Rn → Rn be a homeomorphic mapping. Its distortion
over a compact set Z is defined as D(ψ,Z) = κ2/κ1 ≥ 1, where

κ1 = inf
z1,z2∈Z, z1 ̸=z2

{∥ψ(z1)− ψ(z2)∥/∥z1 − z2∥}, (2)

κ2 = sup
z1,z2∈Z, z1 ̸=z2

{∥ψ(z1)− ψ(z2)∥/∥z1 − z2∥}. (3)

Distortion evaluates the variation of distance metrics in different spaces transformed by
a mapping ψ. Small distortion, e.g., close to its minimum value 1, implies that geometrical
operation in one space, e.g., projection onto a set, can be approximately done in its mapped
space with respect to distance measure and vice versa. Mappings with unit distortion
are called isometric mappings. Mappings with bounded distortion are also referred to as
bi-Lipschitz mappings. The concept has been widely applied in the embedding studies (Xiao
et al., 2018; Agrawal et al., 2021) and computational graphics (Schmidt et al., 2019; Liu
et al., 2022).

The first step in our framework is to learn an MDH mapping ψθ between Kθ and B,
critical for bounding optimality loss.
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Definition 4 (MDH mapping) The MDH mapping is defined as the optimal solution for
the following problem:

min
ψθ∈Hn

logD(ψ−1
θ ,Xθ) s.t. Kθ = ψθ(B), (4)

where Hn is the set of all n-dim homeomorphic mappings, and we denote the set of homeo-
morphic mappings satisfying Kθ = ψθ(B) as Hn(Kθ,B). The distortion of homeomorphic
mapping is evaluated over the region, denoted as Xθ, which contains all possible infeasible
predictions with bounded prediction error ϵpre, for example, Xθ = Kθ + B(0, ϵpre)3,4.

We remark that solving the problem in (4) gives (at least) one homeomorphic mapping
with the minimum distortion among all such mappings between Kθ and B, as (i) it has
feasible solution according to Assumption 3 and (ii) the distortion of a homeomorphic
mapping over a compact set B is bounded (Behrmann et al., 2021). We then denote an
optimal solution as ψ∗

θ .
In general, the problem in (4) is an infinite-dimension optimization and challenging to

solve. We develop a method to learn an optimal solution approximately by bi-Lipschitz INN
in Sec. 5, denoted as Φθ. It is guaranteed to be a homeomorphic mapping, i.e., Φθ ∈ Hn,
with bounded distortion over Rn. However, Φθ may not lie in Hn(Kθ,B), i.e., Φθ(B) ̸= Kθ,
due to INN approximation error. Nevertheless, if Φθ is also valid as Definition 5, the second
step in the HP framework guarantees to “project” an infeasible NN predicted solution back
to the feasible set Kθ.

Definition 5 (Valid mapping) The INN approximated mapping Φθ ∈ Hn is valid for Kθ
if Φθ(0) ∈ Kθ, i.e., it maps the origin in the unit ball to a feasible point in Kθ.

4.2 Homeomorphic bisection

Given an infeasible NN prediction x̃θ /∈ Kθ and a valid INN mapping Φθ, we perform
homeomorphic bisection to recover a feasible solution x̂θ as:

x̂θ = Φθ(α
∗ · z̃θ), (5)

where z̃θ = Φ−1
θ (x̃θ) and α

∗ = sup
α∈[0,1]

{Φθ(α · z̃θ) ∈ Kθ}.

As illustrated in Fig. 3, homeomorphic bisection consists of three steps: (i) map x̃θ to
the homeomorphic space as z̃θ = Φ−1

θ (x̃θ) and set α = 1, (ii) perform bisection search on α
in [0, 1] (trajectory shown as z̃θ → ẑ1 → ẑθ) to find the largest α, denoted as α∗, such that
x̂θ = Φθ(α

∗ · z̃θ) ∈ Kθ, and (iii) return the feasible x̂θ. The pseudo-code is in Algorithm 1.
Such a low-complexity operation, observed with respect to the constraint set Kθ, is to search
along a curve connecting the infeasible x̃θ and an internal point Φθ(0) until reaching a
boundary feasible point x̂θ. As to be discussed in Sec. 6, such operation incurs a minor
optimality loss as the homeomorphic mapping has a minimized distortion.

We make the following remarks. First, in the ideal case when Φθ = ψ∗
θ and B = Φ−1

θ (Kθ),
i.e., the INN learns the MDH mapping perfectly, the homeomorphic bisection in (5) is

3. + between sets represents the Minkowski addition, defined as X + Y = {x+ y | x ∈ X , y ∈ Y}.
4. B(x, r) represents a ball with a radius of r and is centered in x.
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Figure 3: Illustration of homeomorphic bisection.

Algorithm 1 Homeomorphic bisection to recover feasibility.

Input: Infeasible solution x̃θ /∈ Kθ and valid mapping Φθ.
Output: Feasible solution x̂θ ∈ Kθ.
1: initialize total iteration steps k
2: calculate z̃θ = Φ−1

θ (x̃θ), set n = 0, αl = 0, αu = 1
3: while n ≤ k do
4: bisection: αn = (αl + αu)/2
5: candidate: ẑn+1 = αn · z̃θ
6: if Φθ(ẑn+1) ∈ Kθ then
7: increase lower bound: αl ← αn
8: else
9: decrease upper bound: αu ← αn

10: end if
11: n← n+ 1
12: end while
13: find optimal α∗ = αl and feasible point ẑθ = α∗ · z̃θ
14: return x̂θ = Φθ(ẑθ)

equivalent to projecting z̃θ onto the unit ball boundary, with a closed-form expression
ẑθ = z̃θ/∥z̃θ∥. Such an operation incurs very low complexity, thanks to the unit ball’s
geometrical structure. Since Φθ = ψ∗

θ is an MDH mapping, the corresponding x̂θ = Φθ(ẑθ)
must be on the boundary of the feasible set Kθ, and the projection distance ||x̃θ − x̂θ|| is
small because (i) Φθ has a minimum distortion and (ii) ẑθ is the closest point in the unit
ball to z̃θ. These observations provide an intuitive justification for the complexity and
performance of our framework.

Second, in practice, the INN may not learn ψ∗
θ exactly, i.e., B ≠ Φ−1

θ (Kθ) and the
distortion D(Φ−1

θ ,Xθ) is not the minimum. In fact, we may not know the exact shape of
Φ−1
θ (Kθ) to project z̃θ to its boundary directly. Instead, we perform the operation in (5) to

mimic the operation in the ideal case described above, i.e., performing bisection between z̃θ
and the origin of the unit ball but evaluating the feasibility with respect to Kθ. As long as
the INN mapping is valid and maps the origin of the unit ball to an internal point in Kθ,
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such operation is guaranteed to return a feasible point, with minor optimality loss, similar
to the discussion for the ideal case. We formally prove the feasibility guarantee, bound the
optimality loss, and discuss the complexity of INN training in Sec. 6.

5 Learning θ-dependent MDH Mappings

In this section, we propose an efficient unsupervised learning method to train one conditional
INN to learn the MDH mapping ψ∗

θ for every θ ∈ Θ. We first introduce INN for learning
homeomorphic mappings with bounded distortion. We then reformulate the MDH mapping
problem in (4) and present the INN training procedure.

5.1 INN for learning homeomorphic mappings

INN is essentially an invertible NN that is differentiable in forward and inverse directions;
thus, it can be employed to learn a homeomorphic mapping. This is owing to its design on
each invertible layer (Papamakarios et al., 2021). Particular to our study, we build our INN
by stacking up multiple layers, each from the following two adapted from those in (Dinh
et al., 2014; Kingma and Dhariwal, 2018):

• Bi-Lip affine coupling layer

Forward: [y1, y2] = [x1, S(w(x1), L) · x2 + b(x1)], (6)

Inverse: [x1, x2] = [y1, (y2 − b(y1))/S(w(y1), L)], (7)

where x = [x1 ∈ Rn1 , x2 ∈ Rn2 ], w(·) : Rn1 → Rn2 and b(·) : Rn1 → Rn2 are two
regular NNs with learnable parameters, which take x1 as input and predict the weight
and bias respectively for the element-wise affine transformation of x2. The function
S(x, L) := exp(log(L) · tanh(x)) limits the upper and lower bound of the output
weights, such that S(x, L) ∈ (1/L,L), where L > 1 is a predefined parameter. Such
an output constraint of weight ensures the bi-Lipschitz property of this layer, which is
crucial to bound the distortion.

• Invertible affine layer:

Forward: y =Wx+ b, Inverse: x =W−1(y − b), (8)

whereW ∈ Rn×n is an invertible and learnable matrix, and b ∈ Rn is the learnable bias.
The invertibility of W is ensured by construction such as W =WPWL(WU + diag(s)),
where WP is a permutation matrix, WL is a lower triangular matrix, WU is an upper
triangular matrix, and s ∈ Rn is the non-zero diagonal elements.

The bi-Lip affine coupling layer first partitions the input x into two disjoint subsets denoted
as [x1, x2]. It performs an identical mapping for x1 and applies an element-wise affine
mapping for x2. The invertible affine layer directly employs affine transformation for the
input. As a result, both these layers exhibit properties of bijections with continuous inverses,
making them homeomorphic mappings.
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Existing work has shown that the INN composed of affine coupling5 and invertible affine
layers can approximate any (differentiable) homeomorphic mapping (Teshima et al., 2020;
Koehler et al., 2021; Ishikawa et al., 2022), i.e., it can transform a unit ball to any constraint
set under Assumption 3 and vice versa through closed-form INN forward/inverse calculation.

In our study, we design INN with unique bi-Lip affine coupling and invertible affine layers
so that the resulting INN not only has the universal approximation capability, but also has
bounded distortion over Rn, i.e., for any infeasible solution in Rn, the “projected” feasible
solution by homeomorphic bisection in (5) has a bounded distortion-induced optimality loss.

The following proposition outlines the universal approximation capability and the upper
bound of distortion of the proposed INN:

Proposition 6 Given an m-layer INN, denoted as Φ = Φm ◦ · · · ◦ Φl ◦ · · · ◦ Φ1, where Φl

an invertible affine layer for l = 1, 3, · · · ,m − 1 and a bi-Lip affine coupling layer with a
hyper-parameter L > 1 for l = 2, 4, · · · ,m. The following properties hold:

• Φ is capable of representing any n-dimensional differentiable homeomorphic mapping
over a compact set, requiring m = O(n·⌈c1/L⌉) layers, where c1 is a constant associated
with the target mapping.

• Φ assures a bounded distortion over Rn, expressed as D(Φ,Rn) ≤ c2Lm, where c2 is a
constant related to those invertible affine layers of the INN.

The complete proof is in Appendix D.1. We make the following remarks. First, to exactly
represent a differentiable homeomorphic mapping over a compact set, i.e., transform a unit
ball to the desired constraint set, the number of layers is influenced by the dimension of
the mapping and the hyperparameter L. On the other hand, L contributes to bounding
the distortion over Rn, thereby reducing the optimality loss of the “projected” infeasible
solution. Consequently, we can leverage the INN with bi-Lip affine coupling and invertible
affine layers to approximate homeomorphic mappings with a bounded distortion in our HP
framework.

Further, we do not need to train separate INN Φθ for different input parameters θ.
Instead, we can leverage the conditional INN (Winkler et al., 2019; Lyu et al., 2022), which
also takes θ as input, to learn the augmented homeomorphism ψ : Rn+d → Rn+d such that
∀θ ∈ Θ, [Kθ, θ] = ψ([B, θ]). When given a new θ, we have a corresponding homeomorphism
ψθ ∈ Hn such that Kθ = ψθ(B).

In the following sections, we will introduce an unsupervised training approach to approx-
imate the homeomorphism and further minimize the distortion over the region of interest.
The quantitative analysis detailing the optimality loss under INN approximation error and
distortion will be elaborated in Sec. 6

5.2 Reformulation of homeomorphism constraint

To facilitate INN learning, we first reformulate the MDH mapping problem in (4). We have
the following understanding of its homeomorphism constraint ψθ ∈ Hn(Kθ,B) such that
ψθ(B) = Kθ.

5. The affine coupling layer (Dinh et al., 2014; Kingma and Dhariwal, 2018) has no upper bound constraints
for the weights of the input-dependent affine transformation in (6) and (7).

10



Homeomorphic Projection

Proposition 7 The feasible set Hn(Kθ,B) is equivalent to the set of optimal solutions to
the problem:

max
ψθ∈Hn

log V(ψθ(B)) s.t. ψθ(B) ⊆ Kθ, (9)

where V(ψθ(B)) computes the volume of set ψθ(B) and the constraint means that the set
ψθ(B) is a subset of Kθ.

The complete proof is in Appendix D.2. Intuitively, the proposition says that any feasible
homeomorphic mapping resulting in ψθ(B) = Kθ must maximize the volume of the mapped
set ψθ(B), while keeping it within the constraint set Kθ, and vice versa. Thus, the MDH
mapping problem in (4) is equivalent to the following bi-level problem of minimizing the
distortion among the optimal solutions of the problem in (9):

min
ψθ∈Hn

logD(ψ−1
θ ,Xθ) s.t. ψθ ∈ argmax{Problem in (9)}. (10)

As will become clear later, such a reformulation opens the door for unsupervised learning
for INN training.

5.3 Unsupervised INN training

For ease of discussion later, we denote an m-layer INN as Φθ = Φmθ ◦ ... ◦Φlθ ◦ ... ◦Φ1
θ, where

each layer is either a bi-Lip affine coupling layer or an invertible affine layer. Importantly,
due to the invertible design of these layers, the singular values for the Jacobian matrix of
Φlθ exist and have a closed-form expression. For example, the singular values for the affine
coupling layer are either 1 or the weights of the affine transformation. See Appendix C for
detailed formulations. As will become clear later, these closed-form singular values greatly
simplify the process of homeomorphism and distortion approximation. We then denote the
sorted singular values for the Jacobian matrix J of INN as σ1(J) ≥ ... ≥ σn(J).

We employ the following loss function and maximize it to train an INN Φθ with m layers
for learning the MDH mapping under the reformulated problem in (10) in an unsupervised
manner:

L(Φθ) = V̂(Φθ(B))− λ1P(Φθ(B))− λ2D̂(Φ−1
θ ,Xθ), (11)

where λ1 and λ2 are positive coefficients to balance among the three terms.
V̂(Φθ(B)) is a computable approximation of the log-volume term logV(Φθ(B)) in (9) as:

V̂(Φθ(B)) =
1

V(B)

∫
B

n∑
k=1

m∑
l=1

log σk(JΦlθ
(zl))dz + logV(B), (12)

where zl = Φl−1
θ (zl−1) for l = 2, · · · ,m, and z1 ∈ B, JΦlθ(z

l) denotes the Jacobian matrix

of Φlθ(·) at zl, and σk(·) denotes the k-th largest singular value of a matrix, which has a
closed-form expression for INN layers.

P(Φθ(B)) is the penalty term for the constraint violation of Φθ(B) ⊆ Kθ in (9) as:

P(Φθ(B)) =
∫
B
∥ReLU(g(Φθ(z), θ))∥1dz, (13)
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where ReLU(·) = max{0, ·} and g(Φθ(z), θ) calculates the residual for each inequality
constraint as [g1(Φθ(z), θ), . . . , gnineq(Φθ(z), θ)].

D̂(Φ−1
θ ,Xθ) is a computable approximation of the log-distortion term logD(Φ−1

θ ,Xθ) in
(10) as:

D̂(Φ−1
θ ,Xθ) = sup

z1∈Zθ
{
m∑
l=1

log σ1(JΦlθ
(zl))} − inf

z1∈Zθ
{
m∑
l=1

log σn(JΦlθ
(zl))}, (14)

where zl = Φl−1
θ (zl−1) for l = 2, · · · ,m, and z1 ∈ Zθ = Φ−1

θ (Xθ).
We have the following observations for the approximations.

Proposition 8 The two approximation terms in (12) and (14) satisfy log V(Φθ(B) ≥
V̂(Φθ(B)) and logD(Φ−1

θ ,Xθ) ≤ D̂(Φ−1
θ ,Xθ).

The complete proof is in Appendix D.3 and D.4. We make the following remarks. First,
the above proposition implies that the loss function defined in (11) actually provides a
surrogate for the problem presented in (10). Specifically, maximizing the lower bound of
the volume term and minimizing the penalty term in (11) indeed approximate the feasible
homeomorphic mapping under reformulation in (7). Meanwhile, we also try to minimize
the upper bound of the distortion term in (11), which in turn guides the INN to find
an approximated homeomorphic mapping with less distortion. Consequently, we aim to
maximize the loss function in (11) as a means to approximate the MDH mapping under
the equivalent reformation outlined in (10). Additionally, as demonstrated in the proof in
Appendix D.4, minimizing the distortion also contributes to reducing the gap between the
volume estimator V̂(Φθ(B)) and the exact log-volume term logV(Φθ(B). Thus, the loss
function defined in (11) serves as an efficient surrogate loss for the original MDH mapping
problem.

To maximize the loss function in (11) for INN training, we generate quasi Monte Carlo
(QMC)6 samples {zi}Ni=1 ⊂ B to approximate the integration terms in (12) and (13). For
practical implementation of distortion regularization in (14), we first substitute both the
sup and inf operators with the expectation operator. It results in an “average” distortion
computed as Ez1∈Zθ [

∑m
l=1 log σ1(JΦlθ

(zl)) − log σn(JΦlθ
(zl))]. This substitution has been

demonstrated to be efficient in existing Lipschitz regularization schemes (Virmaux and
Scaman, 2018; Behrmann et al., 2021), and it also contributes to the stabilization of INN
training.

Next, we sample z1 ∈ B(0, R), where R ≥ 1 is a hyper-parameter that defines the region
such that Zθ is a subset of B(0, R). The distortion can then be expressed as D(Φθ,B(0, R)),
or equivalently as D(Φ−1

θ ,Φθ(B(0, R))). Nevertheless, we typically set R = 1 in practice
because of (i) training efficiency, where we only need to sample over the unit ball B to
simultaneously compute the three terms in (12), (13), and (14) via INN forward propagation;
and (ii) the distortion remains bounded even outside the evaluated region due to the
proposed bi-Lipschitz INN, as demonstrated in Proposition 6. Consequently, the efficient
implementation of maximizing the surrogate loss in (11) further demonstrates the efficiency
of the unsupervised training scheme for the MDH mapping problem.

6. The integration error for the QMC approach is O
(
(logN)n−1/N

)
, which is faster in the rate of convergence

than Monte Carlo using a pseudorandom sequence (Dick and Pillichshammer, 2010).
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Algorithm 2 Unsupervised training for MDH mapping.

Input: m-layer conditional INN Φ, dataset D1 = {θi}Mi=1 ⊆ Θ, D2 = {zj}Nj=1 ⊆ B.
Output: trained INN.

1: initialize total epoch E, batch size B, and coefficients λ1 and λ2 for loss function.
2: while e ≤ E do
3: batch sampling: {θi}Bi=1 ⊂ D1, {zi}Bi=1 ⊂ D2

4: compute volume term: V̂(Φ) = 1
Bn

∑B
i=1

∑n
k=1

∑m
l=1 log σk(JΦlθi

(zli))

5: compute penalty term: P(Φ) = 1
B

∑B
i=1 ∥ReLU(g(Φθi(zi), θi))∥1

6: compute distortion term: D̂(Φ) = 1
Bm

∑B
i=1[

∑m
l=1 log σ1(JΦlθi

(zli))− log σn(JΦlθi
(zli))]

7: compute loss function L(Φ) = V̂(Φ)− λ1P(Φ)− λ2D̂(Φ)
8: update INN: Φ← Adam(L(Φ))
9: e← e+ 1

10: end while
11: return Φ

Next, to train one conditional INN Φ ∈ Hn+d to learn the θ-dependent MDH mappings
for any θ ∈ Θ, we extend the loss in (11) to

L(Φ) = Eθ[L(Φθ)], (15)

where L(Φθ) is defined in (11) and θ ∈ Θ is uniformly sampled.

In summary, to train the θ-dependent MDH mappings, we utilize the conditional INN
and train it based on the loss function in (15). As shown in Algorithm 2, in each iteration,
we sample a batch of θ ∈ Θ and z ∈ B, approximate the three terms in (11), and use the
Adam optimizer to maximize the loss function, similar to the process of training regular
NNs (Kingma and Ba, 2014).

6 Performance analysis

In this section, we formally prove the feasibility guarantee and bound the optimality loss of
homeomorphic projection. We also characterize its run-time complexity and a condition for
the trained INN to be universally valid over the input-parameter set. Finally, we discuss its
training complexity, scalability, and limitations.

6.1 Feasibility, optimality, and run-time complexity

Theorem 9 For constraint set Kθ under Assumption 3, given an infeasible NN prediction
x̃θ = F (θ) /∈ Kθ with bounded prediction error ϵpre = supθ∈Θ{∥F (θ)− x∗θ∥}, and a valid m-
layer INN Φθ with bounded approximation error ϵinn = supθ∈Θ{dH(Φθ(∂B), ∂Kθ)}7, running
the bisection procedure in Alg. 1 for k steps will return a solution x̂kθ such that:

• it is guaranteed to be feasible, i.e., x̂kθ ∈ Kθ;

7. dH(·, ·) represents the Hausdorff distance between two sets, defined as dH(X ,Y) =
max{dh(X ,Y),dh(Y,X )}, where dh(X ,Y) = supx∈X infy∈Y{∥x− y∥}.
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• it has a bounded optimality loss as

∥x̂kθ − x∗θ∥ ≤ ϵpre +D(Φ−1
θ ,Yθ)(2ϵinn + ϵpre + ϵkbis),

where Yθ = Kθ + B(0,max{ϵpre, ϵinn}) and ϵkbis = 2−k(diam(Kθ) + ϵpre).

The corresponding run-time complexity is O(k(mn2 + G)), where G is the complexity for
verifying the inequality constraints.

The complete proof is in Appendix E. We make the following remarks. First, given a valid
INN, the bisection algorithm is guaranteed to return a feasible solution due to the initial
feasible point, i.e., Φθ(0) ∈ Kθ. It then searches for better feasible points, moving from the
interior to the constraint boundary, as illustrated in Figure 3. When k →∞, the returned
feasible solution will be located on the constraint boundary. Second, the optimality gap
depends on the prediction error ϵpre, the approximation error ϵinn, the distortion D(Φ−1

θ ,Yθ),
and the k-step bisection-induced error ϵkbis.

The prediction error ϵpre, which measures the gap between the predicted and optimal
solutions, is determined by the quality of the provided predictor. The approximation error
ϵinn quantifies the distance between the INN-approximated constraint set Φθ(B) and the
exact constraint set Kθ. Thus, our training scheme aims to minimize this approximation error
based on the reformulation of the homomorphism constraint, as detailed in Proposition 7.

The distortion of Φ−1
θ shown in our loss function (11) is designed to be minimized over

set Xθ = Kθ + B(0, ϵpre). This ensures that, when the approximation error is minimized, the
distortion over the region Yθ will be close to the one over the region Xθ. In practice, we
sample over B to approximate the distortion of Φ−1

θ over the region Φθ(B). This approach is
chosen for its training efficiency, as discussed after Proposition 8. Despite this simplification,
it still performs robustly due to the bi-Lipschitz INN design, which ensures that the distortion
remains bounded even outside the evaluated region, as shown in Proposition 6. Nevertheless,
in the case of a low-quality NN predictor with a large ϵpre, we can sample from B(0, R) with
radius R > 1, to regulate the distortion over a larger region during training, and further
reduce the distortion-induced optimality gap.

The bisection error ϵkbis can be exponentially reduced by increasing the maximum steps
k, as detailed in Alg. 1. This property allows for precise control over the error tolerance,
offering a flexible trade-off between computational effort and solution accuracy.

The overall run-time complexity, i.e., the number of arithmetic operations, when executing
k-step bisection is O(k(mn2 + G)). It includes the INN forward calculation complexity
O(mn2) and the constraint verification complexity O(G) at each bisection. If the inequality
constraint gi(x, θ) is a linear function for all i = 1, · · · , nineq, then G = n · nineq. In contrast,
iterative algorithms such as interior point methods have a complexity of O((n+ nineq)

3) at
each iteration due to the matrix inversion operation. Therefore, our homeomorphic projection
exhibits lower run-time complexity when recovering feasible solutions for ball-homeomorphic
constraint sets.

From the analysis above, the distortion and the approximation error are significant
contributors to the optimality gap. This validates our design of the MDH mapping problem
as defined in (4), as well as our proposed INN loss function given in (11). By carefully
managing these elements, we can effectively reduce the optimality gap, leading to more
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accurate and reliable solutions. It’s also important to note that the results discussed above
are analyzed under worst-case scenarios. In practical applications, the optimality loss of the
homeomorphic projection is often much smaller, resulting in better performance.

The optimality analysis provided in Theorem 9 applies under a general but valid INN.
In the following corollary, we present the optimality analysis, especially for the projection
distance, under a valid INN in several special cases. These scenarios yield a smaller optimality
gap.

Corollary 10 Given an infeasible solution x̃θ /∈ Kθ, let x̂∗θ be the feasible solution retuned by
standard projection operation as x̂∗θ ∈ ProjKθ(x̃θ) = argminy∈Kθ{∥x̃θ − y∥}. The minimum
projection distance is then denoted as ϵpro = ∥x̂∗θ − x̃θ∥. Let x̂θ be the solution returned by
homeomorphic bisection with a valid INN as in Eq. (5). The projection distance of x̂θ is
bounded as:

ϵpro ≤ ∥x̂θ − x̃θ∥ ≤ D(Φ−1
θ ,Y ′

θ)(2ϵinn + ϵpro). (16)

Further, the upper bound can be tightened under the following special cases:

• if the valid INN is an outer approximation as Φθ(B) ⊇ Kθ, then the homeomorphic
projection distance is bounded as ∥x̂θ − x̃θ∥ ≤ D(Φ−1

θ ,Y ′
θ)(ϵinn + ϵpro).

• if the valid INN is an inner approximation as Φθ(B) ⊆ Kθ, then the homeomorphic
projection distance is bounded as ∥x̂θ − x̃θ∥ ≤ D(Φ−1

θ ,X ′
θ)(ϵinn + ϵpro).

• if the INN is feasible as Φθ(B) = Kθ and also isometric as D(Φ−1
θ ,X ′

θ) = 1, then the
homeomorphic projection distance reaches the lower bound as ∥x̂θ − x̃θ∥ = ϵpro.

Here Y ′
θ = Kθ + B(0,max{ϵpro, ϵinn}) and X ′

θ = Kθ + B(0, ϵpro).

The complete proof is in Appendix F. This corollary reveals the gap between homeomor-
phic projection and standard orthogonal projection, which is influenced by the distortion
and approximation error of the INN. To achieve the minimum projection distance, we
need to find an exact feasible homeomorphic mapping with a unit distortion. However, for
general constraint sets, the distortion of feasible homeomorphic mapping cannot be 1 by
Mazur–Ulam theorem (Väisälä, 2003). Thus, in practice, we try to regulate the distortion
and minimize the approximation error of INN by tuning the coefficients in loss function (11).

6.2 Universal validity condition of INN

Theorem 11 Let D1 = {θi, i = 1, . . . ,M} ⊆ Θ be an rc-covering training dataset, i.e.,
∀θ ∈ Θ, ∃θ0 ∈ D1 such that ∥θ − θ0∥ ≤ rc. Suppose the trained INN mapping Φθ is
valid for the interior of constraint set on dataset D1, i.e., ∀θ0 ∈ D1, Φθ0(0) ∈ K◦

θ0. If
(C0+C1)rc ≤ C2, then ∀θ ∈ Θ, Φθ(0) ∈ Kθ, i.e., Φθ will also be valid for any input parameter
in Θ. Here C0 = supθ1,θ2∈Θ,θ1 ̸=θ2{dH(∂Kθ1 , ∂Kθ2)/∥θ1 − θ2∥}, C1 = Lip(Φ(0, ·),Θ), C2 =
arg supr>0{B(Φθ0(0), r) ⊆ Kθ0 , ∀θ0 ∈ D1}.

The complete proof is in Appendix G. Here C0 represents the “Lipschitz” of the constraint
set over Θ, C1 indicates the Lipschitz of the trained INN mapping over Θ, and C2 denotes
the radius of the largest inner approximation ball for the constraint set under dataset D1.
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We make the following remarks. Theorem 11 provides a sufficient condition for the
trained INN to be universally valid over the entire input-parameter set Θ, which is the
premise for Theorem 9. First, we need to make the INN valid under finite samples, i.e.,
Φθ0(0) ∈ K◦

θ0 , where θ
0 ∈ D1 in the training dataset. In the empirical study in Sec. 7, we

observe that this condition is easy to achieve with proper training. This observation is
perhaps not surprising, as we penalize constraint violations P(Φθ0(B)) in (13) for all points
in B. Naturally, the center 0 ∈ B is likely mapped to an internal point Φθ0(0) ∈ K◦

θ0 .

To generalize the valid condition to any input parameter θ ∈ Θ, a sufficient condition is
(C0 + C1)rc ≤ C2. These constants C0, C1, and C2 depend on the geometric structure of
the constraint set. For example, if the constraint set is very “thin”, i.e., C2 is small, or the
constraint set varies dramatically according to the input parameters, i.e., C0 is large, we
need rc to be small to satisfy the condition. Meanwhile, rc is directly related to the data size
and covering number, such that the number of collected input parameters for the rc-covering
set, i.e., M , has an order as O((diam(Θ)/rc)

d). Therefore, facing a highly irregular or
input-sensitive constraint set, we may need to sample more input parameters θ to train an
INN so that the trained INN will be universally valid over the entire input-parameter set Θ.

6.3 Training complexity, scalability, and limitation

Training complexity. First, we need QMC samples in a unit ball {zi}Ni=1 ⊂ B to
approximate three terms in (11) and uniform samples for the input parameters {θj}Mj=1 ⊂ Θ
to train the INN. Both of these can be easily prepared using SciPy (Virtanen et al., 2020).
Afterward, we sample a batch of z and θ separately at each iteration and train the INN using
the Adam optimizer implemented in PyTorch (Kingma and Ba, 2014; Paszke et al., 2019).
Due to the closed-form expressions of (15) by INN parameters, the training computation
depends on the forward-backward propagation of the INN, which can be executed efficiently
on a GPU.

Scalability. The scalability of the HP framework depends on the INN structure, where
both input and output have dimensions corresponding to the constraint set, and only
invertible layers can be applied. Existing works have demonstrated its scalability, especially
in generative models where both input and output are high-dimensional matrices (Kingma
and Dhariwal, 2018; Papamakarios et al., 2021). On the other hand, efficient INN training
needs a closed-form singular value representation, limiting the choices of invertible layers. We
may also leverage the numerical approximation of the loss function under general invertible
layers, as discussed in Appendix C.

Limitations. The limitation of the HP framework also lies in Assumption 3, which
assumes the constraint set to be homeomorphic to a unit ball. If we apply the HP framework
to a non-ball-homeomorphic set, e.g., a donut, two scenarios may occur: (i) the INN
approximation error is small, but the distortion becomes infinitely large as it attempts to
stretch a ball into a donut shape, and (ii) the distortion is low, but the approximation
error becomes large, meaning we may only capture a subset of the constraint set. Although
feasibility can still be guaranteed under a valid INN, the projection error could be substantial
due to either significant distortion or a large approximation error of INN. To address more
general constraints, such as disconnected sets or manifold constraints, we discuss potential
solutions in Appendix B.
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7 Numerical Experiments

We carry out simulations to (i) evaluate whether the proposed INN unsupervised-learning
scheme can approximate MDH mappings between complex constraint sets and a unit ball,
and (ii) compare the performance of homeomorphic projection with existing methods in
ensuring NN solution feasibility for constrained optimization problems, including convex
optimization problems with different constraint and non-convex AC-OPF problems in power
grid operation. The detailed setting of hyper-parameters, INN implementation, and NN
predictor implementation are in Appendix I.

7.1 Approximating MDH mappings

We first investigate the learning of MDH mapping Φ for a 2-dimension constraint approxi-
mation. The parametric constraint set is defined by quadratic inequalities as:

Kθ = {x ∈ R2 | xTQix+ qTi x+ bi ≤ 0, i = 1, · · · , 6}, (17)

where Qi ∈ R2×2, qi ∈ R2, bi ∈ R. The input parameters for Kθ is the denoted as θ =
{Qi, qi, bi}6i=1. By changing the input parameters θ such that assumption 3 is valid, the
constraint set Kθ can be convex or non-convex.

Following the loss function in (15) and the unsupervised training algorithm in Alg. 2,
we train two MDH mappings from a 2-norm ball and a ∞-norm ball to the parametric
constraint set Kθ, respectively. The average log-volume term, constraint violation, and
average log-distortion term during training iterations are depicted in Figure 4. First, we
observe that the volume is maximized, and the constraint violation converges to zero. This
indicates that the approximated homeomorphism under the reformulation in (9) between
two sets is achieved at the early stage of the training process. After that, the average
log-distortion term decreases over iterations, showcasing the effectiveness of our unsupervised
training scheme.

Figure 4: Unsupervised training for INN approximated MDH mappings from 2-norm ball (left) and ∞-norm
ball (right) to the constraint set Kθ under different input parameters. The log-volume term, constrain
violation, and log-distortion term, are computed based on Algorithm 2.

After completing the training phase, we visualize the constraint approximation Φθ(B) =
Φ(B, θ) under varying input parameters θ within the test dataset, as depicted in Figure
5. Our observation is that the mapped set closely approximates the true constraint set,
reaching the constraint boundary, which is indicated by the blue curves. Despite the varying
geometric structures exhibited by the constraint Kθ under different input parameters, the
trained INN Φ consistently showcases good generalization capabilities, effectively fitting the
constraint set under new input parameters.
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Figure 5: Approximated constraint set Φ(B, θ) by trained MDH mappings from 2-norm ball (top) and ∞-norm
ball (bottom) under new input parameters. The blue curves are the inequalities defining the constraint set
Kθ in (17). The color of points in the approximated constraint sets represents the norm of their one-to-one
points in the initial ball.

Figure 6: The visualization of several bisection trajectories in the 2-norm ball (left) and ∞-norm ball (right),
and their corresponding ones in the constraint set after INN approximated MDH mapping. In the unit ball,
we connect the infeasible points to the center and conduct bisection to find the feasible point with respect to
the constraint set.

Figure 7: The visualization of the 3-block INN approximated MDH mapping from 2-norm ball (left) and
∞-norm ball (right) to the constraint set Kθ. Each INN block consists of one linear layer and one coupling
layer. Given the sampled points from the initial ball as the input of INN, the output by each block of INN is
visualized.

Subsequently, we execute the homeomorphic bisection shown in Algorithm 1 to project
the infeasible points back to the constraint under varying inputs, as depicted in Figure
6. Similar to the illustration of the bisection process in Figure 3, the bisection conducted
along the straight line in the unit ball is equivalent to the bisection carried out along
the corresponding curve in the constraint set. We observe that the feasible point over
the constraint boundary along the curve is close to the original infeasible points, which
underscores the effectiveness of the MDH mapping design and the bisection algorithm.

Further, we visualize the process of the INN for transforming the unit ball to the complex
constraint set in Figure 7. Owing to the universal approximation capabilities demonstrated
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in Proposition 6, the 3-block INN already displays a potent ability for approximating complex
constraint learning. Therefore, in the following experiments, we fix the number of INN
blocks to 3 to balance the network complexity and approximation capabilities.

Additionally, we observe that there are no noticeable differences between the∞-norm ball
and the 2-norm ball when used as initial sets for approximating complex constraints. However,
in high-dimensional scenarios, the ∞-norm ball (or unit cube [0, 1]n) is our preferred choice,
as it facilitates QMC sampling and offers numerical stability as maintaining an invariant
volume of 1, while the volume of 2-norm ball converges to zero in high dimension.

In summary, the INN approximated MDH mapping Φθ derives a well-fitted constraint set
under different input parameters through the proposed unsupervised training scheme. In the
next section, we will test the homeomorphic bisection with trained INN in more challenging
optimization problems to show its ability to achieve feasibility with minor optimality loss.

7.2 Ensuring NN solution feasibility

We then tackle the constrained optimization problem using the HP framework. We select four
convex problems with different constraint sets: convex quadratic programming (QP), second-
order cone programming (SOCP), convex quadratically constrained quadratic programming
(QCQP), and semidefinite programming (SDP); and one real-world case: alternating
current optimal power flow AC-OPF, which is a non-convex QCQP. Detailed experimental
settings for these problems are provided in Appendix I.

We evaluate our method based on the following criteria: (i) Feasibility: we calculate the
percentage of feasible instances out of testing instances and the average constraint violation;
(ii) Optimality: we compute the mean absolute percentage error for the solution and
objective value to assess optimality, including all predictions and infeasible ones only; (iii)
Speedup: we record the average inference time (NN inference time + post-processing time)
of testing instances and calculate the speedup compared to the iterative optimizer, where
all NN-based approaches are executed on the NVIDIA A800 GPU, and the solver-based
approaches are executed in parallel on the AMD EPYC 7763 CPU.

We compare the following approaches to solve constrained optimization:

• Optimizer: for convex problems, we use CVXPY (Diamond and Boyd, 2016) with
MOSEK, a general interior-point solver, to obtain the optimal solution. For AC-
OPF problems, we adopt PYPOWER, a specialized interior-point solver (Zimmerman
et al., 1997; Brown et al., 2017), to solve it efficiently. Optimizer-based solutions are
designated as the ground truth compared with the following NN-based methods.

• NN predictor: NN maps the input parameter to the solution using a fully connected
NN with ReLU activation and residual connections. We select two NN predictors for
constrained optimization problems.

1. Eq-NN-S: it first maps the input to a subset of decision variables and reconstructs
the others by solving the equality constraints (Pan et al., 2019; Zamzam and
Baker, 2020; Pan et al., 2022). The training is performed by supervised learning
on optimal input-solution pairs with MSE and regularized by the penalty for
constraint violation. The training dataset is prepared by the iterative solver with
sampled input parameters.
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2. Eq-NN-U: it first maps the input to a subset of decision variables and reconstructs
the others by solving the equality constraints (Donti et al., 2020; Huang et al.,
2021, 2024). The training is performed by unsupervised learning, minimizing the
objective function and regularized by the penalty for constraint violation.

• Post-processing module: the NN-predicted solution may be infeasible, so we
compare different post-processing techniques for the infeasible predictions.

1. Proj: standard orthogonal projection is adopted for post-processing, which is
solved by the iterative Optimizer (Chen et al., 2021a).

2. WS: the infeasible predicted solution is used as the warm-start initialization
point for the iterative Optimizer (Diehl, 2019; Baker, 2019).

3. D-Proj: this is proposed in DC3 (Donti et al., 2020), which applies gradient
descent in a differentiable manner to minimize constraint violation for infeasible
predictions. We tune the hyper-parameters for gradient descent, such as stepsize
and momentum coefficient for each problem for convergence (Donti et al., 2020).

4. H-Proj: for the infeasible solution of NN, we apply bisection in Algorithm 1
with the INN-approximated MDH mapping to recover feasibility.

We remark that homeomorphic projection is a general projection module that can be
integrated into existing NN predictors. Therefore, we adopt two initial NN predictors (Eq-
NN-S and Eq-NN-U) with different levels of feasibility and optimality. The same infeasible
solutions by the NN predictor are then processed by the different post-processing approaches
mentioned above. This comparison ensures the fairness of different methods and also tests
the robustness of HP under different NN predictors.

7.2.1 Convex Constrained Optimization

We first evaluate homeomorphic projection on four benchmark convex problems, including
QP, QCQP, SOCP, and SDP, adhering to the hierarchy of convex programs outlined in
(Boyd et al., 2004). Detailed formulations of these problems are provided in Appendix I.1.
We generate training and testing cases using randomly sampled parameters based on the
public code (Donti et al., 2020) and the basic examples in the CVXPY documents. The
performance of different methods for those convex problems is presented in Tables 2 and 3.
We have the following observations.

Existing NN-based predictors, under various training schemes, fail to guarantee the
feasibility of the predicted solutions due to inherent prediction errors. Since the optimal
solution of a constrained optimization problem is typically located at the boundary with
active constraints, any non-zero approximation error of the NN predictor may shift the
prediction outside of the boundary, resulting in infeasibility. While equality constraints can
be managed through schemes such as the equality completion method (Pan et al., 2020; Donti
et al., 2020), inequality constraints remain a challenge and prevent a full feasibility guarantee.
Integrating penalty functions into the NN loss function has been shown to mitigate constraint
violations during training. However, this approach cannot assure the feasibility of predictions
under new samples due to NN generalization errors, thereby necessitating the use of various
post-processing techniques to restore feasibility. We then evaluate four post-processing
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Table 2: Performance comparison in convex constrained optimization: QP and QCQP.

Method Feasibility Optimality Speedup

NN
Predictor

Post
Processing

feas. rate ineq. vio. eq. vio.
solution error objective error
ave. cor. ave. cor. ave. cor.

% (↑) 1-norm (↓) 1-norm (↓) % (↓) % (↓) % (↓) % (↓) × (↑) × (↑)

QP: n = 200, d = 100, neq = 100, nineq = 100

Eq-NN-S − 90.72 0.023 0 1.62 1.67 0.45 0.45 105 −
Eq-NN-S WS 100 0 0 1.46 0 0.41 0 21.1 2
Eq-NN-S Proj 100 0 0 1.62 1.67 0.45 0.45 49.5 4.6
Eq-NN-S D-Proj 90.82 0.01 0 1.62 1.66 0.45 0.44 28.9 2.7
Eq-NN-S H-Proj 100 0 0 1.63 1.84 0.47 0.59 184 17.2

QP: n = 200, d = 100, neq = 100, nineq = 100

Eq-NN-U − 49.32 0.016 0 3.55 3.55 0.21 0.21 105 −
Eq-NN-U WS 100 0 0 1.75 0 0.11 0 6.3 3.2
Eq-NN-U Proj 100 0 0 3.55 3.55 0.22 0.21 20.5 10.4
Eq-NN-U D-Proj 50.39 0.006 0 3.55 3.54 0.21 0.21 5.1 2.6
Eq-NN-U H-Proj 100 0 0 3.56 3.57 0.26 0.3 173 19.0

Convex QCQP: n = 200, d = 100, neq = 100, nineq = 100

Eq-NN-S − 93.95 0.047 0 4.16 4.36 1.45 1.42 106 −
Eq-NN-S WS 100 0 0 3.9 0 1.37 0 12.8 0.8
Eq-NN-S Proj 100 0 0 4.16 4.36 1.45 1.43 21.3 1.3
Eq-NN-S D-Proj 94.14 0.015 0 4.16 4.36 1.45 1.42 805 48.8
Eq-NN-S H-Proj 100 0 0 4.17 4.52 1.47 1.69 8353 511

Convex QCQP: n = 200, d = 100, neq = 100, nineq = 100

Eq-NN-U − 63.96 0.034 0 6.47 6.68 0.54 0.54 106 −
Eq-NN-U WS 100 0 0 4.06 0 0.35 0 3.5 1.3
Eq-NN-U Proj 100 0 0 6.47 6.68 0.55 0.55 4.2 1.5
Eq-NN-U D-Proj 91.6 0.004 0 6.47 6.68 0.55 0.54 120 43.2
Eq-NN-U H-Proj 100 0 0 6.48 6.72 0.63 0.78 7729 2819

1 n is the dimension of the decision variable, d is the dimension of input parameters, neq and nineq are the numbers of
equality and inequality constraints, respectively.

2 All NN-based schemes use reconstruction techniques to ensure the feasibility of equality constraints Pan et al. (2020);
Donti et al. (2020), as discussed in Appendix A.

3 The ave. metric is calculated based on the average of all predicted solutions, while the cor. metric is evaluated
based only on the corrected infeasible solutions.

approaches to address infeasible predictions from three NN predictors with different levels
of feasibility and optimality.

First, the homeomorphic projection consistently achieves a 100% feasibility rate across
all tested convex constraint sets. This underscores the effectiveness of our unsupervised
training scheme for MDH mapping, complemented by the bisection algorithm’s role in
restoring feasibility. The gradient-based D-Proj method decreases constraint violation
and improves the feasibility rate by minimizing the penalty function. However, it fails to
guarantee feasibility in all cases, and it exhibits significant sensitivity to step size during
parameter tuning in experiments.

Moreover, the homeomorphic projection restores feasibility with minor optimality loss,
even in the presence of relatively large prediction errors. As shown in the columns of
optimality in the Tables, the primary source of the optimality gap is the initial NN prediction,
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Table 3: Performance comparison in convex constrained optimization: SOCP and SDP.

Method Feasibility Optimality Speedup

NN
Predictor

Post
Processing

feas. rate ineq. vio. eq. vio.
solution error objective error
ave. cor. ave. cor. ave. cor.

% (↑) 1-norm (↓) 1-norm (↓) % (↓) % (↓) % (↓) % (↓) × (↑) × (↑)

SOCP: n = 200, d = 100, neq = 100, nineq = 100

Eq-NN-S − 88.96 0.192 0 4.8 5.27 1.35 0.99 106 −
Eq-NN-S WS 100 0 0 4.22 0 1.24 0 12.9 1.4
Eq-NN-S Proj 100 0 0 4.8 5.26 1.37 1.14 13.6 1.5
Eq-NN-S D-Proj 93.85 0.007 0 4.84 5.56 1.38 1.22 308 34
Eq-NN-S H-Proj 100 0 0 4.83 5.47 1.41 1.56 6724 749

SOCP: n = 200, d = 100, neq = 100, nineq = 100

Eq-NN-U − 75.88 0.268 0 19.56 20.96 3.53 3.36 106 −
Eq-NN-U WS 100 0 0 14.5 0 2.72 0 6.3 1.5
Eq-NN-U Proj 100 0 0 19.55 20.94 3.58 3.55 5.9 1.4
Eq-NN-U D-Proj 82.13 0.012 0 19.58 21.07 3.61 3.69 94 22.7
Eq-NN-U H-Proj 100 0 0 19.56 20.99 3.69 4 6257 827

SDP: n = 20× 20, d = 20, neq = 20, nineq = 1

Eq-NN-S − 91.21 0.05 0 12.88 13 12.39 12.09 105 −
Eq-NN-S WS 100 0 0 11.73 0 11.33 0 39.2 3.4
Eq-NN-S Proj 100 0 0 12.88 12.99 12.39 12.12 27.4 2.4
Eq-NN-S D-Proj 91.21 0.05 0 12.88 12.99 12.39 12.09 4.6 0.4
Eq-NN-S H-Proj 100 0 0 12.9 13.28 12.45 12.71 369 32.7

SDP: n = 20× 20, d = 20, neq = 20, nineq = 1

Eq-NN-U − 90.92 0.024 0 29.03 28.9 11.99 11.86 105 −
Eq-NN-U WS 100 0 0 26.4 0 10.92 0 35.1 3.2
Eq-NN-U Proj 100 0 0 29.03 28.89 12 11.88 28.3 2.6
Eq-NN-U D-Proj 90.92 0.01 0 29.03 28.9 11.99 11.87 4.2 0.4
Eq-NN-U H-Proj 100 0 0 29.05 29.18 12.06 12.64 464 42.4

1 The inequality constraint violation for SDP is evaluated by the minimum eigenvalue. In the training stage, we adopt the
penalty function in Needell et al. (2022) for positive-definite matrix constraint.

while our method adds only minor projection errors to locate a feasible solution near the
infeasible prediction. This performance is also supported by Theorem 9 and Corollary 10.

Furthermore, the efficient bisection operation within our framework offers a competitive
speedup in all tested scenarios. Solver-based methods like WS and Proj, although capable
of achieving feasibility with minimal optimality loss, did not provide significant speed
improvements due to their reliance on iterative solvers. The D-Proj method, particularly
when handling complex constraints such as quadratic constraints in convex QCQP or the
positive definite matrix constraints in SDP, suffers from computationally intensive gradient
calculations during the gradient descent process.

7.2.2 Non-convex Constrained Optimization

Subsequently, we assess homeomorphic projection on more challenging non-convex NP-hard
AC-OPF problems in real-world power grids (Bienstock and Verma, 2019; Babaeinejadsa-
rookolaee et al., 2019). The detailed formulations are presented in Appendix I.1. AC-OPF
problems include non-convex quadratic equality constraints, commonly referred to as power
flow equations, along with a set of inequality constraints that represent the physical limits
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Table 4: Performance comparison in non-convex AC-OPF problems.

Method Feasibility Optimality Speedup

NN
Predictor

Post
Processing

feas. rate ineq. vio. eq. vio.
solution error objective error
ave. cor. ave. cor. ave. cor.

% (↑) 1-norm (↓) 1-norm (↓) % (↓) % (↓) % (↓) % (↓) × (↑) × (↑)

30-node AC-OPF: n = 72, d = 60, neq = 60, nineq = 84

Eq-NN-S − 77.73 0.011 0 1.04 1.07 1.22 -0.26 105 −
Eq-NN-S WS 100 0 0 0.8 0 1.27 0 10.7 2.4
Eq-NN-S Proj 100 0 0 1.23 1.93 1.34 0.29 9.6 2.1
Eq-NN-S D-Proj 78.61 0.011 0 1.01 0.97 1.21 -0.29 7.4 1.6
Eq-NN-S H-Proj 100 0 0 1.05 1.15 1.34 0.28 465 108

30-node AC-OPF: n = 72, d = 60, neq = 60, nineq = 84

Eq-NN-U − 79.69 0.011 0 2.7 2.71 1.46 -0.15 105 −
Eq-NN-U WS 100 0 0 2.15 0 1.49 0 10.8 2.2
Eq-NN-U Proj 100 0 0 2.74 2.92 1.56 0.38 11.3 2.3
Eq-NN-S D-Proj 79.88 0.011 0 2.67 2.6 1.45 -0.18 7.8 1.6
Eq-NN-U H-Proj 100 0 0 2.62 2.34 1.55 0.34 596 128

57-node AC-OPF: n = 128, d = 114, neq = 114, nineq = 302

Eq-NN-S − 95.12 0.021 0 2.17 1.49 1.09 0.31 104 −
Eq-NN-S WS 100 0 0 2.1 0 1.08 0 33.4 1.6
Eq-NN-S Proj 100 0 0 2.15 1.15 1.1 0.37 32.6 1.6
Eq-NN-S D-Proj 96.48 0.016 0 2.16 1.41 1.09 0.31 35.5 1.7
Eq-NN-S H-Proj 100 0 0 2.17 1.42 1.1 0.43 730 40.7

57-node AC-OPF: n = 128, d = 114, neq = 114, nineq = 302

Eq-NN-U − 94.53 0.016 0 3.12 2.73 0.64 0.29 104 −
Eq-NN-U WS 100 0 0 2.97 0 0.63 0 32.6 1.8
Eq-NN-U Proj 100 0 0 3.1 2.42 0.64 0.34 33.4 1.8
Eq-NN-U D-Proj 95.02 0.012 0 3.11 2.65 0.64 0.29 31.6 1.7
Eq-NN-U H-Proj 100 0 0 3.12 2.89 0.66 0.66 620 37.5

118-node AC-OPF: n = 344, d = 236, neq = 236, nineq = 452

Eq-NN-S − 94.92 0.002 0 9.05 9.08 0.69 0.59 104 −
Eq-NN-S WS 100 0 0 8.59 0 0.66 0 29 1.5
Eq-NN-S Proj 100 0 0 9.13 10.75 0.69 0.59 33.1 1.7
Eq-NN-S D-Proj 95.41 0.002 0 9.05 9.08 0.69 0.59 24.6 1.3
Eq-NN-S H-Proj 100 0 0 9.36 15.3 0.78 2.44 370 22.9

118-node AC-OPF: n = 344, d = 236, neq = 236, nineq = 452

Eq-NN-U − 92.87 0.008 0 15.18 15.35 1.15 1.18 104 −
Eq-NN-U WS 100 0 0 14.09 0 1.07 0 22.1 1.7
Eq-NN-U Proj 100 0 0 15.15 14.99 1.15 1.19 21.1 1.5
Eq-NN-U D-Proj 92.97 0.008 0 15.18 15.37 1.15 1.18 29.4 2.1
Eq-NN-U H-Proj 100 0 0 15.37 18.03 1.27 2.84 395 33.1

1 The non-linear power flow equation constraint is ensured by the reconstruction techniques Donti et al. (2020).

of the system. System operators must determine optimal power generation and dispatch
strategies to balance real-time demand with minimum costs, where the feasibility of gen-
eration schemes is crucial for power grid safety. The performance of different methods for
AC-OPF is presented in Table 4. We have the following observations.

First, the homeomorphic projection still achieves 100% feasibility in non-convex AC-
OPF problems across power networks ranging from 30-node to 118-node configurations,
demonstrating the robustness of our approach under complex constraint conditions. Moreover,
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in optimization scenarios with non-convex constraints, such as AC-OPF, using an iterative
solver to solve the standard projection problem does not guarantee the identification of the
nearest feasible solutions. The non-convex nature of these problems can trap solvers in local
optima or stationary points related to the KKT system. However, homeomorphic projection
guarantees finding the feasible solution with a bounded optimality gap given valid INN, as
supported by Theorem 9 and validated by the columns of Optimality in the Table.

Regarding speed, although we incorporate equality completion to ensure the feasibility
of power flow equations (Donti et al., 2020), our method still shows competitive speed
compared to commonly adopted solver-based approaches like WS and Proj. This competitive
performance highlights the efficiency of our approach, even when dealing with complex
constraints and larger network scales.

8 Conclusions and Future Directions

We propose Homeomorphic Projection as the first scheme in the literature that (i) guarantees
NN solution feasibility for optimization over a general set homeomorphic to a unit ball,
covering all compact convex sets and certain classes of non-convex sets, (ii) incurs low
run-time complexity, and (iii) attains bounded optimality loss. Our design leverages the
universal approximation capability of INN to learn a minimum distortion homeomorphic
mapping between the constraint set and a unit ball. We then perform a bisection operation
concerning the unit ball so that the INN-mapped final solution is feasible with respect to the
constraint set. We prove the feasibility guarantee and bound the optimality loss. Simulation
results corroborate our analysis and show that homeomorphic projection outperforms existing
methods. Future directions include generalizing the approach to optimization over more
complex constraint sets.
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Appendix A. Handling equality constraints

Figure 8: Constraint homeomorphism with equality constraints.

Let us consider the following constraint set Kθ defined by inequality and equality
constraints:

Kθ = {x ∈ Rn | h(x, θ) = 0, g1(x, θ) ≤ 0, · · · , gnineq(x, θ) ≤ 0}, (18)

where h(·, ·) : Rn+d → Rr is continuous with respect to x and θ, and we denote hθ(·) = h(·, θ).
Assuming that the equality constraint maintains a constant rank:

rank(Jhθ(x)) = r, ∀θ ∈ Θ and ∀x ∈ Kθ, (19)

this implies that Kθ has a Euclidean dimension8 of n− r, as per the Constant-Rank Level
Set Theorem (Lee, 2013).

In simpler terms, we can use a subset of decision variables x1 ∈ Rn−r and reconstruct
the full decision variable set [x1, x2] ∈ Rn via the equality constraint, as depicted in Figure
8, where x2 = ϕθ(x1) and hθ([x1, ϕθ(x1)]) = 0. This process of reconstruction, which ensures
the feasibility of the equality constraint, is widely employed in the literature (Pan et al.,
2019; Zamzam and Baker, 2020; Donti et al., 2020).

We then denote the equivalent constraint set with equality reconstruction as Ksθ = {x ∈
Rn−r | g1([x1, ϕθ(x1)], θ) ≤ 0, · · · , gnineq([x1, ϕθ(x1)], θ) ≤ 0}, which is also homeomorphic
to the original constraint set Kθ ∼= Ksθ (Lee, 2013). The forward and inverse mappings of
homeomorphism are as follows:

[x1, x2] ∈ Kθ → x1 ∈ Ksθ, (20)

x1 ∈ Ksθ → [x1, ϕθ(x1)] ∈ Kθ. (21)

We give two examples to illustrate such an equality completion/reconstruction process:

8. If an open set X is Euclidean of dimension, then every point x ∈ X has a neighborhood that is
homeomorphic to an open subset of Rn (Lee, 2013).
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A.1 Linear equality constraint

Let’s consider an equality constraint defined as {x ∈ Rn | Ax = θ,A ∈ Rr×n, θ ∈ Rr}, where
x is the decision variable and θ is the input parameter. We can assume, without loss of
generality, that the rank of matrix A is rank(A) = r. We then partition the decision variable
into two groups: x1 ∈ Rn−r and x2 ∈ Rr. Correspondingly, matrix A is partitioned as
A = [A1, A2], with A1 ∈ Rr×(n−r) and A2 ∈ Rr×r. Hence, the equality constraint can be
represented as A1x1 +A2x2 = θ.

The reconstruction process essentially implies that we only need a subset of variables,
x1, to ensure the equality constraints, as expressed by:

x2 = ϕθ(x1) = A−1
2 (θ −A1x1). (22)

There are multiple ways to partition x1 and x2 such that A2 has the full rank of r. Empirically,
we select the partition that leads to A2 having a large determinant. After inverting A2, x2
becomes less sensitive to x1, which is advantageous for alleviating error propagation when
training the neural network (NN) predictor and MDH mapping. The Jacobian matrix used
for back-propagation is:

Jϕθ(x1) = −A
−1
2 A1. (23)

A.2 Non-linear equality constraint

In the case of a non-linear equality constraint defined as {x ∈ Rn | h(x, θ) = 0, θ ∈ Rd,h :
Rn+d → Rr}, we partition the decision variable into x1 and x2 similarly. Under the constant
rank assumption, the completion function ϕθ exists and is implicitly defined by:

h([x1, ϕθ(x1)], θ) = 0. (24)

We can use Newton’s method to iteratively solve this non-linear equation. The Jacobian
matrix required for back-propagation can be derived using the Implicit Function Theorem,
as follows:

Jϕθ(x1) = − J−1
hθ

(x2) Jhθ(x1). (25)

In conclusion, reconstruction techniques allow us to exploit the equality constraints and
reduce the number of decision variables to predict. As a result, we only need to model the
constraint set with inequality constraints with a part of the decision variables. Moreover,
this reconstruction process is differentiable, so it can be integrated into the training process.
This strategy provides a powerful tool for dealing with equality constraints in machine
learning models.

Appendix B. HP for general constraints

Assumption 3 posits that the constraint set Kθ is topologically equivalent to a unit ball.
Under this assumption, the constraint set encompasses: (i) all compact convex sets, and
(ii) certain classes of compact and simply-connected non-convex sets. We leverage the
homeomorphism between these sets to facilitate learning the mapping and conducting
projections with reduced computational complexity.
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In this study, we select a unit ball as the initial set due to its simplicity in facilitating
projection and sampling using quasi-Monte Carlo methods, which are integral to the efficiency
of the homeomorphic projection framework.

However, Assumption 3 may not hold for all types of constraints, especially those that
are disconnected or manifold-like. To address more general constraint sets, one approach
is to identify the corresponding homeomorphism for each specific constraint set, such as
transforming a teacup-like set into a torus. Yet, determining the topological properties of a
constraint set can be challenging. Alternatively, we can apply ball-homeomorphic projection
to learn multiple ball-homeomorphic mappings, such that Kθ =

⋃N
c=1Φ(B|θ, c).

For instance, consider the sphere constraint Kθ = {x ∈ Rn | ∥x∥2 = 1}, which has a con-
stant rank of 1, but it is not homeomorphic to a unit ball. After applying the reconstruction
techniques detailed in Appendix A, we have two separated constraint sets as follows: K1

θ =
{[xs ∈ Rn−1,

√
1− ∥xs∥2] | ∥xs∥2 ≤ 1} and K2

θ = {[xs ∈ Rn−1,−
√

1− ∥xs∥2] | ∥xs∥2 ≤ 1},
where both sets are homeomorphic to the n− 1 dimensional unit ball.

Therefore, the study of more general constraint sets will form an integral part of future
work. The aim will be to extend the relevance and utility of the HP framework to a broader
range of optimization problems with complex constraints.

Appendix C. INN introduction

The Invertible Neural Network (INN) is essentially an invertible NN owing to its design on
each invertible layer, such that it is invertible and differentiable in forward and inverse. Thus,
it is a homeomorphic mapping with learnable parameters. We introduce several commonly
used invertible layers for INN, and refer readers to (Papamakarios et al., 2021) for a more
comprehensive introduction.

C.1 Invertible layers of INN

• Affine coupling layer (Dinh et al., 2014)

Forward: [y1, y2] = [x1, exp(w(x1)) · x2 + b(x1)], (26)

Inverse: [x1, x2] = [y1, (y2 − b(y1))/ exp(w(y1))], (27)

where x = [x1 ∈ Rn1 , x2 ∈ Rn2 ], w(·) : Rn1 → Rn2 and b(·) : Rn1 → Rn2 are two
regular NNs with learnable parameters, which take x1 as input and predict the weight
and bias respectively for the element-wise affine transformation of x2. Since the
transformation is element-wise, the Jacobian matrix is diagonal, and the singular
values are either 1 or exp(w(x1)). Furthermore, for the conditional invertible layer, we
augment the input parameters θ as w(x1, θ) and b(x1, θ), respectively.

One particular case of the coupling layer is the affine auto-regressive layer (Germain
et al., 2015), where yi = w(x1:i−1)xi + b(x1:i−1) and it can be efficiently implemented
by masking weight matrix.

• Bi-Lip affine coupling layer

Forward: [y1, y2] = [x1, S(w(x1), L) · x2 + b(x1)], (28)

Inverse: [x1, x2] = [y1, (y2 − b(y1))/S(w(y1), L)], (29)

33



Liang, Chen, and Low

where the function S(x, L) := exp(log(L) · tanh(x)) limits the upper and lower bound
of the output weights, such that S(x, L) ∈ (1/L,L), where L > 1 is a predefined
parameter. Such an output constraint of weight ensures the bi-Lipschitz property of
this layer, which is crucial to bound the distortion.

• Invertible affine layer (Kingma and Dhariwal, 2018)

Forward: y =Wx+ b, Inverse: x =W−1(y − b), (30)

where W ∈ Rn×n is an invertible and learnable matrix, and b ∈ Rn is the learnable
bias. Further, by the LU decomposition, the invertible matrix is designed as W =
WPWL(WU+diag(s)), whereWP is a fixed permutation matrix,WL is a lower triangular
matrix, WU is an upper triangular matrix, and s ∈ Rn is the diagonal elements. The
singular values of the invertible matrix are |s|. The invertible affine layer includes
Invertible 1× 1 convolution and the Actnorm layer (Kingma and Dhariwal, 2018).

• Invertible residual layer (Behrmann et al., 2019; Chen et al., 2019)

Forward: y = x+ F (x), Inverse: xt ← y − F (xt−1), (31)

where F : Rn → Rn is a Lipschitz constrained function where Lip(F ) < 1. The inverse
process is computed iteratively through a fixed-point iteration scheme. Owning to
the Lipschitz constraint, the fixed-point iteration is guaranteed to converge when
t→∞, thus ensuring the invertibility of the residual layer. The log-determinant of
this layer can be approximated by the power series (Behrmann et al., 2019). Further,
an invertible residual layer with certified strong monotonicity and Lipschitzness has
been proposed in (Wang et al., 2024).

• Neural ODE layer (Chen et al., 2018; Grathwohl et al., 2018)

Forward: y = x+

∫ 1

0
F (x, t)dt, Inverse: x = y −

∫ 0

1
F (x, t)dt, (32)

where F (·, ·) : Rn+1 → Rn represents a time-dependent vector field. The forward and
inverse processes are both computed based on integration, ensuring that the system is
invertible.

• Convex potential layer (Huang et al., 2020)

Forward: y = ∇F (x) Inverse: x = argmin
z
{F (z)− y⊤z}, (33)

where F : Rn → R denotes a strongly convex function. The inverse process is computed
by iteratively solving the optimization problem. Because of the strictly convex property
of F , the solution for the inverse process is unique. Thus, the invertibility of the convex
potential layer is guaranteed.
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Table 5: Comparison of different INN layers.

INN layer
Free-form Exact Exact Exact Rn bounded Hn universal
structure forward calc. inverse calc. singular val. distortion approximation

Invertible affine layer ✗ ✓ ✓ ✓ σ1/σn ✗

Affine coupling layer ✗ ✓ ✓ ✓ ✗ ✓

Invertible residual layer ✗ ✓ ✗ ✗ 1+Lip(F )
1−Lip(F )

✓

Neural ODE layer ✓ ✗ ✗ ✗ ✗ ✓

Convex potential layer ✗ ✓ ✗ ✗ ✗ ✗

Bi-Lip affine coupling layer ✗ ✓ ✓ ✓ L2 ✓

1 The Hn universal approximation of a layer represents that the finite composition of the layer and additional
linear layers can approximate any n-dimensional homeomorphic mappings arbitrarily well given enough
number of layers.

C.2 Computational issues and approximation ability of INN

For our Homeomorphic Projection (HP) framework, there are several requirements for the
Invertible Neural Network (INN): (i) The inverse needs to be computed in the bisection
algorithm as outlined in Algorithm 1. This requirement ensures the correct functioning
of the algorithm. (ii) The singular values of the Jacobian matrix of the INN need to be
calculated. This is crucial for the efficient training of the INN as per Equation (11). (iii) The
INN should have bounded distortion to ensure the worst-case performance for homeomorphic
projection. (iv) The INN should be a universal approximator of homeomorphic mappings.
This enables it to handle complex transformations involving a broad range of constraints.

Based on the summary of INNs in Table 5, we select the coupling layer as a building
block of INN in our HP framework.

Appendix D. Proof for Propositions

D.1 Proof for Proposition 6

Proof We first prove the universal approximation ability of the INN Φ with bi-Lipschitz
affine coupling layers and invertible linear layers over compact sets with the following steps:
(i) the finite composition of bi-Lipschitz affine coupling layers can represent any affine
coupling layer over a compact set, (ii) the composition of affine coupling layers and invertible
linear layers is the universal approximation of any differentiable homeomorphism, also known
as a diffeomorphism.

Let’s start with the first statement. Consider an affine coupling layer fa : Rn → Rn
defined as:

[y1, y2] = [x1, exp(wa(x1)) · x2 + ba(x1)], (34)

where x = [x1 ∈ Rn1 , x2 ∈ Rn2 ] ∈ X and X is a comapct set. wa(·) : Rn1 → Rn2 and
ba(·) : Rn1 → Rn2 are continuous functions.

As the output of a continuous function over a compact set is bounded, the weights for
the affine transformation, i.e., exp(wa(x1)), are also bounded, and there exists a constant
c > 1 such that 1/c ≤ exp(wa(x1)) ≤ c.
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On the other hand, the bi-Lip affine coupling layer fb : Rn → Rn is defined as:

[y1, y2] = [x1, exp(log(L) · tanh(wb(x1))) · x2 + bb(x1)], (35)

where wb and bb are also continuous function. The weights for the affine transformation are
within the interval (1/L,L).

Therefore, to represent an affine coupling layer over the compact set, we need ⌈c/L⌉
bi-Lip affine coupling layers, where the weight for each bi-Lip affine coupling layer is given
by exp(log(L) · tanh(wb(x1))) = exp(wa(x1))

1/⌈c/L⌉, and the bias is zero except for the last
layer in the composition as bb(x1) = ba(x1).

For the second statement, we leverage the existing results on the universal approximation
ability for affine coupling layers based INN by Theorem 2 in Teshima et al. (2020). The
number of INN layers has an order of O(n), which is given by: (i) the near-identity
diffeomorphism representation of any diffeomorphism over a compact set by Proposition
2 in Teshima et al. (2020), (ii) n single-coordinate diffeomorphism representations of any
near-identity diffeomorphism by Proposition 3 in Teshima et al. (2020), and (iii) the affine
coupling layer and linear layer representation of any single-coordinate diffeomorphism by
Lemma 13 and 14 in Teshima et al. (2020).

Let c1 be the smallest constant bounding the weights within interval (1/c1, c1) for each
affine coupling layer in the INN constructed in Teshima et al. (2020). We then substitute
them with ⌈c1/L⌉ bi-Lip affine coupling layers. Finally, we need O(n · ⌈c1/L⌉)-layer INN,
composed of bi-Lip affine coupling layers and invertible linear layers, to represent any
diffeomorphism over the compact set.

Second, we prove the upper bound of distortion over Rn. Let’s consider a m-layer
INN, denoted as Φ = Φm ◦ · · · ◦ Φl ◦ · · · ◦ Φ1, where Φl is an invertible linear layer for
l = 1, 3, · · · ,m− 1 and a bi-Lipschitz affine coupling layer with a hyper-parameter L > 1 for
l = 2, 4, · · · ,m.

The distortion for each bi-Lipschitz affine coupling layer can be bounded by L2. The
distortion of those linear layers is given by the condition number of the invertible matrix,
which is input-invariant. Therefore, the distortion for Φ can be bounded as:

D(Φ,Rn)
(a)

≤
m∏
l=1

D(Φl,Rn)
(b)

≤
∏

l=1,3,··· ,m−1

σ1(W
l)

σn(W l)
(L2)m/2 = c2L

m, (36)

where W l is the invertible weight matrix for the linear layer, σ1(W
l) and σn(W

l) denote the
largest and smallest singular values of the matrix W l, and c2 is a constant. Inequality (a) is
by item 4 in Lemma 14, and inequality (b) is derived from the singular value representation
of the distortion by item 2 in Lemma 14.

Therefore, the Bi-Lipschitz INN has a bounded distribution over Rn.

D.2 Proof for Proposition 7

Proof Under Assumption 3, those sets Kθ ∼= ψθ(B) ∼= B are topologically equivalent
and have non-zero volume in Rn. Therefore, we can define the volume of those sets, e.g.,
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V(B) =
∫
B 1dz. Because of the containment constraint ψθ(B) ⊆ Kθ, the volumes of two

sets satisfy V(ψθ(B)) ≤ V(Kθ). Therefore, the maximum of V(ψθ(B)) under constraint
ψθ(B) ⊆ Kθ is V(Kθ). The maximum is reached when ψθ(B) = Kθ, which is the homeomor-
phism constraint.

D.3 Proof for Volume estimation in Proposition 8

Proof Let’s denote an m-layer INN as Φθ = Φmθ ◦ · · ·◦Φlθ ◦ · · ·◦Φ1
θ and a uniform probability

distribution over B as z ∼ Unif(B), where the probability density function is as p(z) = 1
V(B) .

To approximate the log-volume term logV(Φθ(B)), we first apply the Jensen inequality

for log V(Φθ(B))
V(B) :

log
V(Φθ(B))
V(B)

= log

∫
B |det JΦθ(z)|dz

V(B)
(37)

= logEz∼p(z)[| det JΦθ(z)|] (38)

≥ Ez∼p(z)[log | det JΦθ(z)|]. (39)

Next, the log-determinant term can be expressed by the singular values as:

log |det JΦθ(z)| =
n∑
k=1

m∑
l=1

log σk(JΦlθ
(zl)), (40)

where zl = Φl−1
θ (zl−1) for l = 2, · · · ,m and the initial value z1 = z ∼ p(z).

Thus, a lower bound of the log-volume logV(Φθ(B)) is as follows:

logV(Φθ(B)) ≥ V̂(Φθ(B)) =
1

V(B)

∫
B

n∑
k=1

m∑
l=1

log σk(JΦlθ
(zl))dz + logV(B). (41)

The gap for the lower bound is zero when the determinant is invariant, i.e., ∀z ∈ B,
|det JΦθ(z)| =

V(Φθ(B))
V(B) . We use this lower bound because of numerical stability and the

closed-form expression of singular values for INN, as shown in Appendix C.
Further, we find a connection between the gap of the lower bound and the distortion,

which implies that minimizing the distortion also helps reduce the gap of volume estimation.
Let’s apply a sharpened version of Jensen’s inequality Liao and Berg (2018):

Var(v(z))

2v2max

≤ log
V(Φθ(B))
V(B)

− Ez∼p(z)[log | det JΦθ(z)|] ≤
Var(v(z))

2v2min

(42)

where v(z) = | det(JΦθ(z))| and vmin ≤ v(z) ≤ vmax,∀z ∈ B.
By applying Popoviciu’s inequality on variances Sharma et al. (2010), we have the upper

bound of the gap:

Var(v(z))

2v2min

≤ (vmax − vmin)
2

8v2min

=
(vmax/vmin − 1)2

8
(43)
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Consider the singular-value representation of determinant v(z) = |det(JΦθ(z))| =∏n
i=1 σi(JΦθ(z)), we can bound the maximum and minimum determinant as:

vmax ≤ (sup
z∈B
{σ1(JΦθ(z))})

n, vmin ≥ ( inf
z∈B
{σn(JΦθ(z))})

n (44)

As a result, we have vmax/vmin ≤ (
supz∈B{σ1(JΦθ (z))}
infz∈B{σn(JΦθ (z))}

)n
(a)
= D(Φθ,B)n, where the equality (a)

is according to the second item in Lemma 14.

Therefore, the gap for volume estimation is bounded as:

log V(Φθ(B))− V̂(Φθ(B)) ≤ Var(v(z))

2v2min

≤ 1

8
(D(Φθ,B)n − 1)2 (45)

D.4 Proof for Distortion estimation in Proposition 8

Proof Let’s denote an m-layer INN as Φθ = Φmθ ◦ · · · ◦ Φlθ ◦ · · · ◦ Φ1
θ. According to the first

item in Lemma 14, the distortion can be expressed as the product of the Lipschitz constants
as:

logD(Φ−1
θ ,Xθ) = log Lip(Φθ,Zθ) + log Lip(Φ−1

θ ,Xθ) (46)

(a)
= sup

z∈Zθ
{log σ1(JΦθ(z))}+ sup

x∈Xθ
{log σ1(JΦ−1

θ
(x))} (47)

(b)

≤ sup
z1∈Zθ

{log
m∏
l=1

σ1(JΦlθ
(zl))}+ sup

x1∈Xθ
{log

m∏
l=1

σ1(JΦ−1,m−l+1
θ

(xl))} (48)

(c)
= sup

z1∈Zθ
{log

m∏
l=1

σ1(JΦlθ
(zl))} − inf

z1∈Zθ
{log

m∏
l=1

σn(JΦlθ
(zl))} (49)

= sup
z1∈Zθ

{
m∑
l=1

log σ1(JΦlθ
(zl))} − inf

z1∈Zθ
{
m∑
l=1

log σn(JΦlθ
(zl))} (50)

= D̂(Φθ,Zθ) = D̂(Φ−1
θ ,Xθ) (51)

where zl = Φl−1
θ (zl−1) for l = 2, · · · ,m+ 1, the initial value is z1 ∈ Zθ and the final value

zm+1 = Φθ(z
1). Similarly, xl = Φ−1,m−l+1

θ (xl−1) for l = 2, · · · ,m+ 1, the initial value is
x1 ∈ Xθ and the final value xm+1 = Φ−1

θ (x1).

The equality (a) employs the spectral norm, which is the largest singular value, to
represent the Lipschitz constant. The inequality (b) is derived from the property of the
spectral norm of the matrix, as expressed by ∥AB∥ ≤ ∥A∥∥B∥. This suggests that the
largest singular values for the Jacobian matrix of a composite function are restricted by the
product of the largest singular values for the Jacobian matrix of each layer. The equality (c)
is due to the property of the invertible matrix, expressed as σ1(J) = 1/σn(J

−1). Lastly, we
denote the approximation of the log-distortion term as D̂(Φ−1

θ ,Xθ).

38



Homeomorphic Projection

For the practical implementation of distortion estimation, we adopt the average in place
of the sup and inf operators. In essence, this approximation estimates the average local
distortion at each point over each layer of the network. By adopting such an average-
case distortion, we simplify the original worst-case formulation, thereby stabilizing the
unsupervised training process of the INN. This approach has proven efficient in related
Lipschitz regularization schemes, as demonstrated in several studies Virmaux and Scaman
(2018); Behrmann et al. (2019, 2021).

We choose singular values to represent distortion due to their closed-form expression in
certain INN structures, such as the coupling layer. For other INN structures, like i-ResFlow
Behrmann et al. (2019), we can utilize commonly used finite difference estimation techniques
to evaluate the distortion Schmidt et al. (2019); Behrmann et al. (2021); Liu et al. (2022).

Appendix E. Proof for Theorem 9

Proof

E.1 Feasibility

According to the Definition 5 of Valid INN, it maps the origin to a feasible point in Kθ
as Φθ(0) ∈ Kθ. Applying the inverse homeomorphic mapping to both sides, we have
0 ∈ Φ−1

θ (Kθ).
The bisection process in Algorithm 1 aims to find the nearest feasible point to the

infeasible prediction z̃θ = Φ−1
θ (x̃θ) /∈ Φ−1

θ (Kθ) in the homeomorphic space by solving:

α∗ = sup
α∈[0,1]

{Φθ(α · z̃θ) ∈ Kθ}, (52)

where z̃θ = Φ−1
θ (x̃θ).

Therefore, the bisection algorithm is guaranteed to return a feasible solution due to the
initial feasible point, i.e., Φθ(0) ∈ Kθ. It then searches for better feasible points, moving
from the interior to the constraint boundary, as illustrated in Figure 3. When k →∞, the
returned feasible solution will be located on the constraint boundary.

Next, we will give a lower bound for the optimal α∗. Considering those points over the
constraint boundary in homeomorphic space, we have:

0 ≤ r + inf
x∈∂Kθ

{∥Φ−1
θ (x)∥ − r} ≤ ∥z∥ ≤ r + sup

x∈∂Kθ
{∥Φ−1

θ (x)∥ − r}, ∀z ∈ Φ−1
θ (∂Kθ), (53)

where r is the radius for the ball (we use r = 1 by default). For convenience, we denote
δ−inn = infx∈∂Kθ{∥Φ

−1
θ (x)∥ − r} and δ+inn = supx∈∂Kθ{∥Φ

−1
θ (x)∥ − r}.

We then consider the one-side Hausdorff distance between ∂B and Φ−1
θ (∂Kθ), de-

noted as δinn = dh(Φ
−1
θ (∂Kθ), ∂B). According to the third item in Lemma 15, we have

dh(Φ
−1
θ (∂Kθ), ∂B) ≥ supx∈∂Kθ{|∥Φ

−1
θ (x)∥2 − r|}, which implies:

δinn = dh(Φ
−1
θ (∂Kθ), ∂B) ≥ max{|δ+inn|, |δ

−
inn|}. (54)
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Since the bisection process can be view as “projecting” the infeasible point z̃θ = Φ−1
θ (x̃θ)

to constraint boundary in homeomorphic space as ẑθ = α∗ · z̃θ ∈ Φ−1
θ (∂Kθ), we can bound

∥α∗ · z̃θ∥ according to the inequality in (53):

0 ≤ r + δ−inn ≤ ∥α
∗z̃θ∥ ≤ r + δ+inn → 0 ≤

r + δ−inn
∥z̃θ∥

≤ α∗ ≤
r + δ+inn
∥z̃θ∥

. (55)

Therefore, we have the lower bound for α∗, denoted as α∗
l =

r+δ−inn
∥z̃θ∥ . Based on the un-

derstanding of it, we can next analyze the worst-case optimality loss under the bisection
algorithm.

E.2 Optimality

Let x̂kθ be the feasible solution after the k-step bisection in Algorithm 1 and x∗θ is the optimal
solution for problem in (1). To analyze the optimality loss of returned feasible solution x̂kθ ,
we decompose the loss by following terms:

∥x̂kθ − x∗θ∥ ≤ ∥x̂kθ − x̂θ∥︸ ︷︷ ︸
bisection error

+ ∥x̂θ − x̃θ∥︸ ︷︷ ︸
projection error

+ ∥x̃θ − x∗θ∥︸ ︷︷ ︸
prediction error

, (56)

where x̂θ is the feasible solution by solving x̂θ = Φθ(α
∗ · Φ−1

θ (x̃θ)), and x̃θ is the infeasible
predicted solution with bounded prediction error ϵpre.

Next, we will bound the three error terms.

E.2.1 Prediction error

According the definition of prediction error of NN predictor F as ϵpre = supθ∈Θ{∥F (θ)−x∗θ∥},
where x̃θ = F (θ), the prediction error is then bounded as:

∥x̃θ − x∗θ∥ ≤ ϵpre. (57)

For convenience, we denote the region for all possible infeasible predictions as Xθ = Kθ +
B(0, ϵpre), such that x̃θ ∈ Xθ.

E.2.2 Projection error

The second part is the error by “projecting” the infeasible solution back to the constraint set
after solving α∗ = supα∈[0,1]{Φθ(α∗ · z̃θ) ∈ Kθ}. For the predicted infeasible solution x̃θ ∈ Xθ
and the projected feasible solution x̂θ ∈ Kθ ⊆ Xθ, we denote ẑθ = Φ−1

θ (x̂θ) and z̃θ = Φ−1
θ (x̃θ)

correspondingly.
First, the homeomorphic projection error can then be expressed as:

∥x̂θ − x̃θ∥ = ∥Φθ(ẑθ)− Φθ(z̃θ)∥, (58)

where x̂θ, x̃θ ∈ Xθ and ẑθ, z̃θ ∈ Zθ = Φ−1
θ (Xθ).

Next, based on the Lipschitz constant of mapping Φθ over Zθ, we can bound the error as:

∥x̂θ − x̃θ∥ ≤ Lip(Φθ,Zθ)∥ẑθ − z̃θ∥ (59)

(a)
= Lip(Φθ,Zθ)∥α∗z̃θ − z̃θ∥ (60)

(b)

≤ Lip(Φθ,Zθ)∥α∗
l z̃θ − z̃θ∥ (61)
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Figure 9: Illustration of Proof for projection error.

where equality (a) is according to x̂θ = Φθ(ẑθ) = Φθ(α
∗ · Φ−1

θ (x̃θ)) = Φθ(α
∗ · z̃θ), such that

ẑθ = α∗z̃θ. Inequality (b) is due to the lower bound of α∗ as shown in (55) and we denote
ẑl = α∗

l z̃θ
To proceed, let an auxiliary point as z′θ = Φ−1

θ (x′θ), where x
′
θ = λx∗θ + (1− λ)x̃θ ∈ ∂Kθ

for λ ∈ [0, 1].

According to Lemma 16, we can bound the distance as ∥z̃θ − ẑl∥ ≤ ∥z̃θ − z′l∥, where
z′l = α∗

l
∥z̃θ∥
∥z′θ∥

z′θ as shown in Figure 9.

Thus, the projection error can be bounded as:

∥x̂θ − x̃θ∥ ≤ Lip(Φθ,Zθ)∥α∗
l

∥z̃θ∥
∥z′θ∥

z′θ − z̃θ∥ (62)

(a)

≤ Lip(Φθ,Zθ)(∥α∗
l

∥z̃θ∥
∥z′θ∥

z′θ − z′θ∥+ ∥z′θ − z̃θ∥) (63)

(b)

≤ Lip(Φθ,Zθ)∥α∗
l

∥z̃θ∥
∥z′θ∥

z′θ − z′θ∥+ Lip(Φθ,Zθ)Lip(Φ−1
θ ,Xθ)(∥x′θ − x̃θ∥) (64)

(c)

≤ Lip(Φθ,Zθ)∥α∗
l

∥z̃θ∥
∥z′θ∥

z′θ − z′θ∥+D(Φθ,Zθ)ϵpre (65)

where the inequality (a) is by the triangle inequality. The inequality (b) is based on the
Lipschitz constant of Φ−1

θ over Xθ. For the inequality (c), we express the product of Lipschitz
constants as the distortion term D(Φθ,Zθ) according to the first item in Lemma 14 and
bound the distance ∥x′θ − x̃θ∥ by the prediction error ϵpre.

Next, the projection error can be bounded as:

∥x̂θ − x̃θ∥≤Lip(Φθ,Zθ)|α∗
l ∥z̃θ∥ − ∥z′θ∥| · ∥

z′θ
∥z′θ∥

∥+D(Φθ,Zθ)ϵpre (66)

(a)

≤ Lip(Φθ,Zθ)|r + δ−inn − ∥z
′
θ∥|+D(Φθ,Zθ)ϵpre (67)

(b)

≤ Lip(Φθ,Zθ)(|r − ∥z′θ∥|+ |δ−inn|) + D(Φθ,Zθ)ϵpre (68)
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where the inequality (a) is by ∥ z′θ
∥z′θ∥
∥ ≤ 1 and α∗

l =
r+δ−inn
∥z̃θ∥ as shown in (55). The inequality

(b) is by the triangle inequality.

According to the inequality in (54), we have |r − ∥z′θ∥| ≤ δinn and |δ−inn| ≤ δinn. Thus,
the projection error can be bounded as:

∥x̂θ − x̃θ∥ ≤ 2Lip(Φθ,Zθ)δinn +D(Φθ,Zθ)ϵpre (69)

(a)

≤ 2Lip(Φθ,Zθ)Lip(Φ−1
θ ,Kθ ∪ Φθ(B))ϵinn +D(Φθ,Zθ)ϵpre (70)

(b)

≤ 2Lip(Φθ,Zθ)Lip(Φ−1
θ ,Xθ ∪ Kθ ∪ Φθ(B))ϵinn +D(Φθ,Zθ)ϵpre (71)

where the inequality (a) is by the second item in Lemma 15 such that δinn ≤ Lip(Φ−1
θ ,Kθ ∪

Φθ(B))ϵinn. The inequality (b) is by the third item in Lemma 14.

Let Yθ = Kθ + B(0,max{ϵpre, ϵinn}) such that Xθ ∪Kθ ∪Φθ(B) ⊆ Yθ. We can bound the
projection error as:

∥x̂θ − x̃θ∥ ≤ 2Lip(Φθ,Zθ)Lip(Φ−1
θ ,Yθ)ϵinn +D(Φθ,Zθ)ϵpre (72)

Since Kθ ⊆ Xθ ⊆ Yθ and Zθ ⊆ Φ−1(Yθ), based on the first and third items in Lemma 14,
we can bound the error as:

∥x̂θ − x̃θ∥ ≤ D(Φ−1
θ ,Yθ)(2ϵinn + ϵpre) (73)

E.2.3 Bisection error

The last part is the error coming from solving α∗ = supα∈[0,1]{Φθ(α∗ · z̃θ) ∈ Kθ} using
bisection in Algo. 1. We set the maximum bisection steps as k, and let the returned
solution as ẑkθ = αkz̃θ, where α

k is the k-th iteration of bisection for α ∈ [0, 1] such that
|αk − α∗| ≤ 2−k.

Therefore, the bisection error can be bounded as:

∥x̂kθ − x̂θ∥
(a)

≤ Lip(Φθ,Zθ)∥ẑkθ − ẑθ∥ (74)

= Lip(Φθ,Zθ)∥αkz̃θ − α∗z̃θ∥ (75)

= Lip(Φθ,Zθ)|αk − α∗|∥z̃θ − 0∥ (76)

≤ Lip(Φθ,Zθ)2−k∥z̃θ − 0∥ (77)

where x̂kθ = Φθ(ẑ
k
θ ) and x̂θ = Φθ(ẑθ). Since x̂kθ , x̂θ ∈ Kθ are feasible solutions, then

ẑkθ , ẑθ ∈ Φ−1
θ (Kθ) ⊆ Zθ and the inequality (a) is based on the Lipschitz constant of Φθ over

Zθ.
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Next, we consider mapping the point back to the original space as x̃θ = Φθ(z̃θ) and
bound the error as:

∥x̂kθ − x̂θ∥
(a)

≤ Lip(Φθ,Zθ)Lip(Φ−1
θ ,Xθ)

1

2k
∥x̃θ − Φθ(0)∥ (78)

(b)

≤ D(Φ−1
θ ,Xθ)

1

2k
(∥x̃θ − x∗θ∥+ ∥x∗θ − Φθ(0)∥) (79)

(c)

≤ D(Φ−1
θ ,Xθ)

1

2k
(ϵpre + diam(Kθ)) (80)

(d)

≤ D(Φ−1
θ ,Yθ)

1

2k
(ϵpre + diam(Kθ)). (81)

where x̃θ ∈ Xθ is the infeasible predictions and Φθ(0) ∈ Kθ ⊆ Xθ is owning to the valid
INN condition. The inequality (a) is based on the Lipschitz constant of Φ−1

θ over Xθ. The
inequality (b) is based on the first item in Lemma 14 and applies the triangle inequality using
an auxiliary point x∗θ. The inequality (c) bounds ∥x̃θ − x∗θ∥ by the definition of prediction
error and bounds ∥x∗θ − Φθ(0)∥ by the diameter of constraint set Kθ. The inequality (d) is
owning to Xθ ⊆ Yθ and the third item in Lemma 14.

E.2.4 Final results for optimality loss

In summary, combining the prediction error, projection error, and bisection error, we have
the results:

∥x̂kθ − x∗θ∥ ≤ ϵpre +D(Φ−1
θ ,Yθ)(2ϵinn + ϵpre + ϵkbis), (82)

where Yθ = Kθ + B(0,max{ϵpre, ϵinn}) and ϵkbis = 2−k(diam(Kθ) + ϵpre).

E.3 Run-time complexity

The run-time complexity for Algorithm 1 involves, (i) inverse calculation of INN for the
infeasible predictions as z̃θ = Φ−1

θ (x̃θ), (ii) k-step bisection, which includes one forward INN
calculation x̂n = Φθ(ẑn) and one verification for the feasibility of Φθ(ẑn).

Consider an m-block INN, where each invertible block is a composition of an bi-Lip
affine coupling layer and an invertible linear layer. Based on the definitions of the two layers
in Appendix C, both forward and inverse computation involve a complexity of O(n2). Thus,
the run-time complexity for INN is O(mn2)

For the verification of feasibility, we calculate g(x̂, θ) = [gi(x̂, θ), ..., gnineq(x̂, θ)] to find
if it is a feasible solution. We denote the complexity for calculating g(x̂, θ) as G. For
instance, G = nineq · n for linear constraints, G = nineq · n2 for quadratic constraints, and
G = nineq · O(n1.5) for positive definite matrix constraints

Therefore, to execute k-step binary search, we have the total run-time complexity as
O(k(mn2 +G))

43



Liang, Chen, and Low

Appendix F. Proof for Corollary 10

From the analysis of optimality loss, we find the prediction error is dominated by the given
predictor, the bisection error converges to zero with increasing bisection steps, and the main
gap comes from the projection error. To minimize the projection error, we formulate the
MDH mapping problem to minimize the distortion and the approximation error. To better
understand the projection error, we discuss its upper bound under several special cases, as
shown in Table 6.

Table 6: Projection error under different settings.

Setting Projection error: ∥x̂θ − x̃θ∥

Valid INN mapping Φθ(0) ∈ Kθ D(Φ−1
θ ,Y ′

θ)(2ϵinn + ϵpro)

Valid outer approximation Φθ(0) ∈ Kθ and Φθ(B) ⊇ Kθ D(Φ−1
θ ,Y ′

θ)(ϵinn + ϵpro)
Inner approximation Φθ(B) ⊆ Kθ D(Φ−1

θ ,X ′
θ)(ϵinn + ϵpro)

Lower bound by standard projection x̂∗
θ ∈ ProjKθ

(x̃θ) ϵpro = ∥x̂∗
θ − x̃θ∥ ≤ ϵpro

Feasible homeomorphic mapping Φθ(B) = Kθ D(Φ−1
θ ,X ′

θ)ϵpro
Isometric homeomorphic mapping Φθ(B) = Kθ and D(Φ−1

θ ,X ′
θ) = 1 ϵpro

Here Y ′
θ = Kθ + B(0,max{ϵpro, ϵinn}) and X ′

θ = Kθ + B(0, ϵpro).

F.1 Valid INN mapping

Proof Following the proof in (62), we select the auxiliary point x′θ as the point by stan-
dard projection, i.e., x′θ = x̂∗θ ∈ ProjKθ(x̃θ) = argminy∈Kθ{∥x̃θ − y∥} and denoted the
projection distance as ϵpro = ∥x̂∗θ − x̃θ∥ ≤ ϵpre, then we have a bound for ∥x̂θ − x̃θ∥ re-
lated to the standard projection distance: ∥x̂θ − x̃θ∥ ≤ D(Φ−1

θ ,Y ′
θ)(2ϵinn + ϵpro), where

Y ′
θ = Kθ + B(0,max{ϵpro, ϵinn}).

F.2 Valid INN and outer approximation

If we have an approximated MDH such that Φθ(0) ∈ Kθ and Φθ(B) ⊇ Kθ, which constructs
an otter approximation of the constraint set.

∥x̂θ − x̃θ∥ ≤ D(Φ−1
θ ,Y ′

θ)(ϵinn + ϵpro). (83)

Proof

Since Φθ(B) ⊇ Kθ, after homeomorphic mapping B ⊇ Φ−1
θ (Kθ), we have δ−inn ≤ δ

+
inn ≤ 0

and δinn = |δ−inn|.
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Following the inequalities from (67) to (73), we have:

∥x̂θ − x̃θ∥ ≤ Lip(Φθ,Zθ)(|r + δ−inn − ∥z
b
θ∥|) + D(Φθ,Zθ)ϵpre (84)

(a)

≤ Lip(Φθ,Zθ)(|δ+inn − δ
−
inn|) + D(Φθ,Zθ)ϵpre (85)

≤ Lip(Φθ,Zθ)δinn +D(Φθ,Zθ)ϵpre (86)

≤ Lip(Φθ,Zθ)Lip(Φ−1
θ ,Xθ ∪ Kθ ∪ Φθ(B))ϵinn +D(Φθ,Zθ)ϵpre (87)

(b)

≤ Lip(Φθ,Zθ)Lip(Φ−1
θ ,Kθ + B(0,max{ϵpre, ϵinn}))ϵinn +D(Φθ,Zθ)ϵpre (88)

≤ D(Φ−1
θ ,Yθ)(ϵinn + ϵpre), (89)

where the inequality (a) is by δ−inn ≤ ∥z′θ∥ − r ≤ δ+inn according to inequalities (53) and
applying the triangle inequality. The inequality (b) is owning to Kθ ⊆ Φθ(B) ⊆ Yθ.

Similarly, if we select the x′θ as the point by standard projection, i.e., x′θ = x̂∗θ ∈
ProjKθ(x̃θ) = argminy∈Kθ{∥x̃θ−y∥}, then we have a bound related to the standard projection

distance: ∥x̂θ − x̃θ∥ ≤ D(Φ−1
θ ,Y ′

θ)(ϵinn + ϵpro).

F.3 Valid INN and inner approximation

If we have an approximated MDH such that Φθ(B) ⊆ Kθ, which constructs an inner
approximation of the constraint set and it is also valid Φθ(0) ∈ Kθ.

∥x̂θ − x̃θ∥ ≤ D(Φ−1
θ ,X ′

θ)(ϵinn + ϵpro). (90)

Proof
Since Φθ(B) ⊆ Kθ, after homeomorphic mapping B ⊆ Φ−1

θ (Kθ), we have 0 ≤ δ−inn ≤
δ+inn = δinn.

Following the inequalities from (67) to (73), we have:

∥x̂θ − x̃θ∥ ≤ Lip(Φθ,Zθ)|r + δ−inn − ∥z
′
θ∥|+D(Φθ,Zθ)ϵpre (91)

(a)

≤ Lip(Φθ,Zθ)(|δ+inn − δ
−
inn|) + D(Φθ,Zθ)ϵpre (92)

≤ Lip(Φθ,Zθ)δinn +D(Φθ,Zθ)ϵpre (93)

≤ Lip(Φθ,Zθ)Lip(Φ−1
θ ,Xθ ∪ Kθ ∪ Φθ(B))ϵinn +D(Φθ,Zθ)ϵpre (94)

(b)

≤ Lip(Φθ,Zθ)Lip(Φ−1
θ ,Xθ)ϵinn +D(Φθ,Zθ)ϵpre (95)

= D(Φ−1
θ ,Xθ)(ϵinn + ϵpre), (96)

where the inequality (a) is by δ−inn ≤ ∥z′θ∥ − r ≤ δ+inn according to inequalities (53) and
applying the triangle inequality. The inequality (b) is owning to Φθ(B) ⊆ Kθ ⊆ Xθ.

Similarly, if we select the x′θ as the point by standard projection, i.e., x′θ = x̂∗θ ∈
ProjKθ(x̃θ) = argminy∈Kθ{∥x̃θ−y∥}, then we have a bound related to the standard projection

distance: ∥x̂θ − x̃θ∥ ≤ D(Φ−1
θ ,X ′

θ)(ϵinn + ϵpro).
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F.4 Feasible homeomorphic mapping

Under the feasible mapping Φθ ∈ Hn(Kθ,B), given an infeasible prediction x̃θ, the home-
omorphic bisection algorithm is equivalent with following projection operator: x̂θ =
HPΦθ

Kθ(x̃θ) = Φθ(ProjB(Φ
−1
θ (x̃θ))). Let the optimal projection solution as x̂∗θ ∈ ProjKθ(x̃θ) =

argminy∈Kθ{∥x̃θ − y∥} ⊂ ∂Kθ and the projection distance as ϵpro = ∥x̂∗θ − x̃θ∥.
The homeomorphic projection error is bounded as:

ϵpro ≤ ∥x̂θ − x̃θ∥ ≤ D(Φ−1
θ ,X ′

θ)ϵpro. (97)

Proof

By definition of homeomorphic projection operator under feasible mapping, the homeo-
morphic projection error is bounded as:

∥x̂θ − x̃θ∥ = ∥Φθ(ProjB(Φ−1
θ (x̃θ)))− Φθ(Φ

−1
θ (x̃θ))∥ (98)

(a)

≤ Lip(Φθ,Z ′
θ)∥ProjB(Φ−1

θ (x̃θ))− Φ−1
θ (x̃θ)∥ (99)

(b)

≤ Lip(Φθ,Z ′
θ)∥Φ−1

θ (x̂∗θ)− Φ−1
θ (x̃θ)∥ (100)

(c)

≤ Lip(Φθ,Z ′
θ)Lip(Φ

−1
θ ,X ′

θ)∥x̂∗θ − x̃θ∥ (101)

= D(Φ−1
θ ,X ′

θ)ϵpro (102)

where the inequality (a) is based on the Lipschitz constant of Φθ over Z ′
θ = Φ−1

θ (X ′
θ). The

inequality (b) is based on the property of standard projection operation. The inequality (c) is
based on the Lipschitz constant of Φ−1

θ over X ′
θ and the definition of projection distance ϵpro.

The inequality (d) is based on the first item in Lemma 14 and the definition of projection
error.

Therefore, the homeomorphic projection error has a lower bounded as the standard
projection error and an upper bounded by the standard projection error multiplied by the
distortion of homeomorphic mapping. Further, if the feasible mapping is isometric, the
homeomorphic projection error reaches the lower bound.

Definition 12 A mapping ψ : Rn → Rn is isometric if it preserves the distance as: ∥ψ(x)−
ψ(y)∥ = κ∥x− y∥,∀x, y ∈ Z, where κ > 0.

In other words, if the homeomorphic mapping Φθ is isometric over Z ′
θ, the distortion

D(Φ−1
θ ,X ′

θ) = 1. The homeomorphic projection distance is exactly the same as the standard
projection distance.

Appendix G. Proof for Theorem 11

Proof

First, we define the ϵ-covering dataset as follows:
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Definition 13 (ϵ-covering dataset) Let X ⊂ Rn be a compact set. A finite-samples
dataset D = xi

N
i=1 ⊂ X is an ϵ-cover of X if ∀y ∈ X , ∃x ∈ D such that |x− y| ≤ ϵ. The size

of the dataset is of order N = |D| = O((diam(X )/ϵ)n).

Given that D1 is an rc-covering dataset for Θ, it implies that for any θ ∈ Θ, there exists
θ0 ∈ D1 such that |θ − θ0| ≤ rc.

First, we can bound the variation of the constraint boundary for a pair (θ, θ0) as follows:

dH(∂Kθ, ∂Kθ0) ≤ ∥θ − θ0∥C0 ≤ C0rc (103)

where C0 = supθ1,θ2∈Θ,θ1 ̸=θ2{dH(∂Kθ1 , ∂Kθ2)/∥θ1 − θ2∥} represents the ”Lipschitz” of the
mapping from input parameters to the constraint set. Therefore, C0rc provides an upper
bound for the variation of the constraint boundary with respect to the variation of the input
parameter.

Figure 10: Illustration of C0rc, C1rc, and C2.

Next, we can bound the variation of the mapped center Φθ(0) for a pair of (θ, θ0) as
follows:

∥Φ(0, θ)− Φ(0, θ0)∥ ≤ ∥θ − θ0∥Lip(Φ(0, ·),Θ) ≤ rcC1, (104)

where C1 = Lip(Φ(0, ·),Θ) denotes the Lipschitz constant of the trained INN mapped center
over the input parameters. Consequently, C1rc provides an upper bound for the variation of
the mapped center in relation to the variation of the input parameter.

Given that the INN is valid for the interior of the constraint set under the rc-covering
dataset, i.e., for any θ0 ∈ D1, Φθ0(0) ∈ K◦

θ0 , there exists r > 0 such that B(Φθ0(0), r) ⊆ Kθ0 .
This represents an inner approximation for the constraint set.

We can then denote the largest radius of the inner ball as follows:

C2 = arg sup
r>0
{B(Φθ0(0), r) ⊆ Kθ0 , ∀θ0 ∈ D1} (105)

By this definition, we have B(Φθ0(0), C2) ⊆ Kθ0 for any θ0 ∈ D1.
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If the condition C1rc + C0rc ≤ C2 holds, then the following relations will also hold:

(i) Φθ(0)
(a)
∈ B(Φθ0(0), C1rc)

(b)

⊆ B(Φθ0(0), C2)
(c)

⊆ Kθ0 (106)

The relation (a) is due to ∥Φθ(0)− Φθ0(0)∥ ≤ C1rc as shown in (104). The relation (b) is
validated by the inequality C1rc ≤ C2. The relation (c) is established by the definition given
in equation (105). Therefore, if the condition C1rc +C0rc ≤ C2 holds, we can conclude that
Φθ(0) is an interior point of the constraint set Kθ0 .

Next, we have:

(ii) B(Φθ(0), C0rc)
(a)

⊆ B(Φθ(0), C2 − C1rc)
(b)

⊆ B(Φθ0(0), C2)⊆Kθ0 (107)

The relation (a) is derived from the condition C2 − C1rc ≥ C0rc. The relation (b) is due
to ∥Φθ(0) − Φθ0(0)∥ ≤ C1rc as shown in equation (104). Consequently, if the condition
C2−C1rc ≥ C0rc holds, we have an inner approximation ball B(Φθ(0), C0rc) for the constraint
set Kθ0 . This also implies that the distance between Φθ(0) and the constraint boundary
∂Kθ0 is at least C0rc, i.e., dh(Φθ(0), ∂Kθ0) ≥ C0rc.

To proceed, let’s define a set as X = Kθ0 \ (
⋃
x∈∂Kθ0

B(x,C0rc)). This represents a subset

of Kθ0 such that X + B(0, C0rc) = Kθ0 . The set X is not empty since Φθ(0) is an interior
point for Kθ0 and dh(Φθ(0), ∂Kθ0) ≥ C0rc. Therefore, we can assert that Φθ(0) ∈ X .

On the other hand, given that dH(∂Kθ, ∂Kθ0) ≤ C0rc, the boundary ∂Kθ is contained in
set as ∂Kθ ⊆ ∂Kθ0+B(0, C0rc). It implies Kθ0\(

⋃
x∈∂Kθ0

B(x,C0rc)) ⊆ Kθ ⊆ Kθ0+B(0, C0rc).

As a result, Φθ(0) is also an interior point of Kθ, as Φθ(0) ∈ X ⊆ Kθ.
Therefore, if C1rc + C0rc ≤ C2 holds, ∀θ ∈ Θ, we have Φθ(0) ∈ Kθ.

Appendix H. Technical Lemmas

Lemma 14 (Property of distortion) The distortion for a homeomorphic mapping ψ ∈
Hn over the compact set Z is denoted as D(ψ,Z). Then the following properties hold:

(1) D(ψ,Z) = Lip(ψ,Z)Lip(ψ−1,X ), where X = ψ(Z), Lip(·, ·) indicates the Lipschitz
constant of mapping over a set.

(2) D(ψ,Z) = D(ψ−1,X ) =
supz∈Z{σ1(Jψ(z))}
infz∈Z{σn(Jψ(z))} =

supx∈X {σ1(Jψ−1 (x))}
infx∈X {σn(Jψ−1 (x))} , where σ1(·) ≥ · · · ≥

σn(·) denotes the sorted singular values of the Jacobian matrix J for mapping at a
certain point.

(3) if Z1 ⊆ Z2, then D(ψ,Z1) ≤ D(ψ,Z2).

(4) Let ψ1 : Z → X and ψ2 : X → Y are homeomorphic mappings, then D(ψ2 ◦ ψ1,Z) ≤
D(ψ1,Z)D(ψ2,X ).
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Proof (1) According to Definition 3, the distortion of mapping ψ over set Z is defined as
D(ψ,Z) = κ2/κ1, where κ2 is also the definition of Lipschitz constant of ψ as

κ2 = sup
z1,z2∈Z,z1 ̸=z2

{∥ψ(z1)− ψ(z2)∥/∥z1 − z2∥} = Lip(ψ,Z), (108)

and κ1 is defined as:

1/κ1 = 1/ inf
z1,z2∈Z,z1 ̸=z2

{∥ψ(z1)− ψ(z2)∥/∥z1 − z2∥} (109)

= sup
z1,z2∈Z,z1 ̸=z2

{∥z1 − z2∥/∥ψ(z1)− ψ(z2)∥} (110)

= sup
x1,x2∈X ,x1 ̸=x2

{∥ψ−1(x1)− ψ−1(x2)∥/∥x1 − x2∥} = Lip(ψ−1,X ). (111)

Therefore, the distortion can be represented as the multiplication of the Lipschitz constant
of forward and inverse mappings as: D(ψ,Z) = Lip(ψ,Z)Lip(ψ−1,X ).

(2) Next, we adopt the spectral norm, i.e., the largest singular value, to represent the
Lipschitz constant as

Lip(ψ,Z) = sup
z∈Z
{σ1(Jψ(z))}, Lip(ψ−1,X ) = sup

x∈X
{σ1(Jψ−1(x))}. (112)

Because of the invertibility of homeomorphic mapping, such that the Jacobian matrix is
also invertible as J−1

ψ (z) = Jψ−1(x) for x = ψ(z). According to the property of invertible
matrix, we can represent the singular values as σ1(Jψ(z)) = 1/σn(Jψ−1(x)) for x = ψ(z).

Thus, the distortion can be represented as:

D(ψ,Z) =
supz∈Z{σ1(Jψ(z))}
infz∈Z{σn(Jψ(z))}

=
supx∈X {σ1(Jψ−1(x))}
infx∈X {σn(Jψ−1(x))}

= D(ψ−1,X ). (113)

As a result, we can evaluate the distortion of a homeomorphic mapping ψ over X or Z
equivalently as D(ψ,Z) = D(ψ−1,X ).

(3) According to Eq. (113), if Z1 ⊆ Z2, then:

D(ψ,Z1) =
supz∈Z1

{σ1(Jψ(z))}
infz∈Z1{σn(Jψ(z))}

≤
supz∈Z2

{σ1(Jψ(z))}
infz∈Z2{σn(Jψ(z))}

= D(ψ,Z2). (114)

(4) According to the Lipschitz representation of distortion, we have:

D(ψ2 ◦ ψ1,Z) = Lip(ψ2 ◦ ψ1,Z)Lip(ψ−1
1 ◦ ψ

−1
2 ,Y) (115)

(a)

≤ Lip(ψ1,Z)Lip(ψ2,X )Lip(ψ−1
1 ,X )Lip(ψ−1

2 ,Y) (116)

(b)

≤ D(ψ1,Z)D(ψ2,X ) (117)

where inequality (a) is by the property of Lipschitz of Function composition. Equality is
due to the Lipschitz representation of distortion.
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Lemma 15 (Property of Hausdroff distance) The Hausdroff distance between sets is
denoted as dH(X ,Y) = max{dh(X ,Y),dh(Y,X )}, where the one-side Hausdroff distance is
defined as: dh(X ,Y) = supx∈X infy∈Y{∥x− y∥}. Then the following properties hold:

(1) Y ⊆ X + B(0, r) if and only if dh(Y,X ) ≤ r; if Y = X + B(0, r) then dH(Y,X ) ≤ r;

(2) For a homeomorphic mapping ψ ∈ Hn, we have dh(ψ(X ), ψ(Y)) ≤ Lip(ψ,X∪Y)dh(X ,Y) ≤
Lip(ψ,X ∪ Y)dH(X ,Y);

(3) Let B = {z ∈ Rn | ∥z∥2 ≤ r}, then dh(∂X , ∂B) ≥ supx∈∂X {|∥x∥ − r|}.

Proof (1) First, to prove if dh(Y,X ) ≤ r then Y ⊆ X + B(0, r), we have:

inf
x∈X
{∥x− y∥} ≤ sup

y∈Y
inf
x∈X
{∥x− y∥} = dh(Y,X ) ≤ r, (118)

such that ∀y ∈ Y, the distance infx∈X {∥x− y∥} ≤ r. In other words, ∀y ∈ Y, there exist a
x0 ∈ X such that y ∈ B(x0, r), which indicates Y ⊆ X + B(0, r).

Secondly, to prove if Y ⊆ X + B(0, r) then dh(Y,X ) ≤ r, we have the Minkowski sum
for the set Y ⊆ Y ′ = X + B(0, r), where Y ′ = {y′ = x+ r⃗ | x ∈ X , ∥r⃗∥ = r}. Then we have

dh(Y,X ) = sup
y∈Y

inf
x∈X
{∥x− y∥} ≤ sup

y∈Y ′
inf
x∈X
{∥x− y∥} (119)

= sup
x′∈X ,r⃗

inf
x∈X
{∥x− (x′ + r⃗)∥} ≤ sup

x′∈X ,r⃗
{∥x′ − (x′ + r⃗)∥} = r. (120)

Therefore, we conclude Y ⊆ X + B(0, r) if and only if dh(Y,X ) ≤ r.
Further, if Y = X + B(0, r), where Y = {y = x+ r⃗ | x ∈ X , ∥r⃗∥ = r}, we have:

dh(X ,Y) = sup
x∈X

inf
y∈Y
{∥x− y∥} = sup

x∈X
inf

x′∈X ,r⃗
{∥x− (x′ + r⃗)∥} ≤ sup

x∈X
{∥x− (x+ r⃗)∥} = r.

(121)

Therefore, we have dh(X ,Y) ≤ r and dh(Y,X ) ≤ r, leading to dH(Y,X ) ≤ r.
(2) According to the definition of one-side Hausdroff distance, we have:

dh(ψ(X ), ψ(Y)) = sup
x∈X

inf
y∈Y
{∥ψ(x)− ψ(y)∥} (122)

≤ Lip(ψ,X ∪ Y) sup
x∈X

inf
y∈Y
{∥x− y∥} (123)

= Lip(ψ,X ∪ Y)dh(X ,Y) ≤ Lip(ψ,X ∪ Y)dH(X ,Y), (124)

where Lip(·, ·) indicates the Lipschitz constant of a mapping over a set.
(3) According to the definition of one-side Hausdroff distance, we have:

dh(∂X , ∂B) = sup
x∈∂X

inf
z∈∂B
{∥x− z∥} = sup

x∈∂X
{∥x− Proj∂B(x)∥} (125)

≥ sup
x∈∂X

{|∥x∥ − ∥Proj∂B(x)∥|} (126)

= sup
x∈∂X

{|∥x∥ − r|}. (127)
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Lemma 16 For a, b ∈ Rn and ∥a∥2 = ∥b∥2, if λ ≥ 0, then ∥λa− a∥2 ≤ ∥λa− b∥2

Proof Let the angle between a and b as β, where 0 ≤ β ≤ π, then we have:

∥λa− b∥22 − ∥λa− a∥22 = λ2∥a∥22 + ∥b∥22 − 2λ∥a∥2∥b∥2 cos(β)− λ2∥a∥22 − ∥a∥22 + 2λ∥a∥22
(128)

= 2λ∥a∥22 − 2λ∥a∥2∥b∥2 cos(β) (129)

= 2λ∥a∥22(1− cos(β)) ≥ 0. (130)

Appendix I. Experiment settings

In this appendix, we will specify the formulation of constrained optimization problems in
Appendix I.1, the detailed structure of NN predictors and training parameters in Appendix
I.2, and the structure of INN mapping and the training parameters of INN approximated
MDH mapping are in Appendix I.3.

I.1 Formulation of constrained optimization problem

We test the HP framework for five constraint optimization problems: QP, convex QCQP,
SOCP, SDP, and AC-OPF. The mathematical formulation is presented below:

QP : min
x∈Rn

1

2
xTQx+ pTx (131)

s.t. Ax = θ, Gx ≤ h, l ≤ x ≤ u,

where Q ∈ Sn++, p, l, u ∈ Rn, A ∈ Rneq×n, G ∈ Rnineq×n, h ∈ Rnineq , and θ ∈ Rneq .

Convex QCQP : min
x∈Rn

1

2
xTQx+ pTx (132)

s.t. xTHix+ gTi x ≤ hi, i = 1, ..., nineq

Ax = θ, l ≤ x ≤ u,

where Hi ∈ Sn++, gi ∈ Rn, and hi ∈ R for i = 1, ..., nineq.

SOCP : min
x∈Rn

1

2
xTQx+ pTx (133)

s.t. ∥Gix+ hi∥2 ≤ cTi x+ di, i = 1, ..., nineq

Ax = θ, l ≤ x ≤ u,
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where Gi ∈ Rm×n, hi ∈ Rm, ci ∈ Rn, and di ∈ R for i = 1, ..., nineq.

SDP : min
X∈Symn

tr(CX) (134)

s.t. tr (AiX) = θi, X ⪰ 0, L ≤ X ≤ U,

where C ∈ Rn×n, Ai ∈ Rn×n, and θi ∈ R for i = 1, ..., neq.
A compact formulation of the AC-OPF problem with complex variables is as follows.

AC-OPF : min pTgQpg + bTpg (135)

s.t. pmin
g ≤ pg ≤ pmax

g , (136)

qmin
g ≤ qg ≤ qmax

g , (137)

vmin
m ≤ |v| ≤ vmax

m , (138)

vmin
a ≤ ∠vi − ∠vj ≤ vmax

a (139)

|vi(v̄i − v̄j)w̄ij | ≤ Smaxij , (140)

(pg − pd) + (qg − qd) i = diag(v)W̄ v̄, (141)

var. pg ∈ Rn, qg ∈ Rn, v ∈ Cn (142)

For a power network with n nodes, pd ∈ Rn, qd ∈ Rn represent the real power and reactive
power demand. pg ∈ Rn, qg ∈ Rn represent the real power and reactive power generation.
v ∈ Cn denotes the voltage (both real and imaginary parts). W ∈ Cn×n is the nodal
admittance matrix of the power network, which represents its topology. Given different
power demands, we solve the optimal power generation by satisfying the flow-balance
constraints and minimizing the generation cost.

I.2 Structure and training for NN predictor

We adopt the fully connected NN with ReLU activation and residual connection, denoted as
F , to predict the optimal solution for constrained optimization problems given the input
parameters. For simple upper/lower bound in the constrained optimization problem, we
adopt a scaled sigmoid function in the last layer to enforce the limits. The parameters are
in Table 7.

For supervised training schemes, we collect the optimal input-solution pairs under
different input parameters using an iterative solver. Subsequently, we aim to minimize
the mean square error (MSE) between the solution predicted by the NN predictor and the
optimal solutions, as well as the constraint violation for predicted solutions. For unsupervised
training schemes, we only sample the input parameters and minimize the objective value
regularized by the constraint violation for NN predicted solutions. Two training schemes
are represented as:

Supervise : min
F

Eθ,x∗θ [∥F (θ)− x
∗
θ∥22 + λs1∥ReLU(g(F (θ), θ))∥1 + λs2∥(h(F (θ), θ))∥1]

Unsupervise : min
F

Eθ[f(F (θ), θ) + λu1∥ReLU(g(F (θ), θ))∥1 + λu2∥(h(F (θ), θ))∥1]

where the second term stands for the penalty for inequality constraint violation, and the third
term is the penalty for equality constraint violation. By adjusting the penalty coefficient λ,
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we can train the NN predictor to achieve different qualities in terms of solution feasibility and
optimality. For the equality constraint, we can utilize the variable selection and completion
techniques elaborated in Appendix A to ensure its feasibility.

Table 7: Structure of NN predictor in experiments

Parameter Value

NN structure

dimension of input layer d
dimension of output layer n
dimension of hidden layer ⌊(d+ n)/2⌋
activation function ReLU(·)
number of layer 3
last layer Sigmoid(·)

NN training parameters

number of training samples 20,000
number of testing samples 1,024
number of iteration 10,000
optimizer Adam
learning rate 0.001
batch size 256
the coefficient for objective function 0.0
the coefficient for inequality penalty 0.1
the coefficient for equality penalty 0.0

Table 8: Structure of INN mapping in experiments

Parameter Value

INN structure

dimension of input layer n+ d
dimension of output layer n

basic INN block

{
Actnorm, Inv. Conv.

Bi-Lip Autoregressive

}
number of INN block 3
the last layer Sigmoid(·)

INN training parameters

B 2/∞-norm
scale ratio R 1
number of QMC samples z ∈ B 10,000
number of Uniform samples θ ∈ Θ 10,000
number of iteration 10,000
optimizer Adam
learning rate 10−4

batch size 1,024
the coefficient for penalty 10
the coefficient for distortion 1
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I.3 Structure and training for INN mapping

Inspired by the generative flow with the invertible 1x1 Convolutions (GLOW) model (Kingma
and Dhariwal, 2018), we construct an Invertible Neural Network (INN) composed of three
basic layers. These include the Actnorm layer, the invertible convolution layer, and the
bi-Lipschitz autoregressive layer. Notably, the first two layers are specific instances of the
invertible affine layer, while the third one is a special case of the bi-Lip affine Coupling layer.

To train the MDH mapping for different examples following Algorithm 2, we select the
parameters shown in Table 8.
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